ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

é;uSEnIX fusenlx
ASSOCIATION ASSOCIATION

AVAILABLE

USENIX Security 25 Artifact Appendix: Software Availability Protection
in Cyber-Physical Systems

Ao Li*, Jinwen Wang*, Ning Zhang
Computer Security and Privacy Laboratory
Washington University in St. Louis

A Artifact Appendix

A.1 Abstract

The artifact contains the source code of Gecko, an attack re-
covery approach that not only restores execution promptly
after an attack but also disables exploited features to enhance
system availability. It comprises three key components: (1)
compartmentalization and instrumentation, (2) a shadow com-
partment mechanism, and (3) checkpoint/restore mechanisms.
For this artifact evaluation, we demonstrate Gecko’s function-
ality by showcasing its ability to recover ArduCopter from
emulated attacks. Specifically, (1) ArduCopter is compartmen-
talized using our customized compilers, and (2) it recovers
from a triggered crash with the support of the shadow com-
partment mechanism and checkpoint/restore mechanisms. We
aim to streamline the Artifact Evaluation (AE) process by
providing a pre-configured machine with all necessary depen-
dencies.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Conducting the Artifact Evaluation (AE) for Gecko does not
raise any security, privacy, or ethical concerns. All AE tasks
are performed on a dedicated remote machine specifically
used for AE, ensuring that the process remains isolated and
does not interact with the reviewer’s personal or sensitive
code/data.

A.2.2 How to access

The source code is available on GitHub at https://github.

com/WUSTL-CSPL/Gecko, as well as on Zenodo: https://
zenodo.org/records/15049225.

A.2.3 Hardware dependencies

There is no specific hardware dependency. For convenience
during evaluation, we provide access to a remote machine set
up via TeamViewer.

A.2.4 Software dependencies

Gecko is evaluated using ArduPilot (Copter-4.0) as the target
application. The testing environment consists of Ubuntu 20.04
as the operating system and LLVM version 13.0.1 as the
compiler.

A.2.5 Benchmarks

None

A.3 Set-up

This setup is intended for users who wish to build the system
from scratch. However, to simplify the process, we provide
a pre-configured Docker container that allows reviewers to
skip Section 3 entirely. The container is available at: ghcr.
io/al0lixxx/gecko-image:stable.

A.3.1 Installation

Prerequisite APT packages:

$ sudo apt install cmake build-essential
make texinfo bison flex ninja-build git
gitk git-guil ncurses-dev texlive-full
binutils-dev python3-networkx python3-
matplotlib python3-pygraphviz python3-
serial python3-pip python3-distutils
python-is-python3 tmux libgtk-3-dev
libwebkit2gtk-4.0-dev libjpeg-dev
libtiff-dev libsdll.2-dev libgstreamerl
.0-dev

Prerequisite pip packages:

pip install community pydot opencv-python
future MAVProxy wxPython

LLVM Installation: Gecko is tested on LLVM-13. User can
either install the package on ubuntu or compile from source
code. Due to space constraints, please refer to the official
instructions for more details.

Build SVF program analysis tool:

https://github.com/WUSTL-CSPL/Gecko
https://github.com/WUSTL-CSPL/Gecko
https://zenodo.org/records/15049225
https://zenodo.org/records/15049225
ghcr.io/a01ixxx/gecko-image:stable
ghcr.io/a01ixxx/gecko-image:stable

$ cd /path/to/Gecko/SVF
$./build.sh

Build CRIU checkpoint/restore tool:

Next, Gecko uses the following command line to automati-
cally instrument the defense mechanism in the given applica-
tion with our customized compiler.

$./2_instrumentation.sh

install depdendencies

$ sudo apt install libdrm-dev gnutls-dev
libnftables-dev libbsd-dev libprotobuf-
dev libprotobuf-c-dev protobuf-c-
compiler protobuf-compiler python3-
protobuf libnl-3-dev libcap-dev uuid-
dev libbsd-dev libnftables-dev libnetl-
dev gnutls-dev libdrm-dev

$ cd /path/to/Gecko/checkpoint_restore

$ make clean

$ make

Result E1-2: The final binary result is the file
/build/sitl/bin/arducopter. You can use the following
command to check the instrumented attack detection codes.

objdump -D ./build/sitl/bin/arducopter |
grep _dfi

ArduPilot Installation:

$ cd /path/to/Gecko/ardupilot
$./waf configure --board sitl
$./waf build

(E2): This demonstrates Gecko’s ability to recover from a
crash (C2). [3 human-minutes + 10 compute-minutes]:
Launching the ArduPilot simulation requires multiple com-
mands, so we provide three scripts to simplify the process.
The first script launches ArduPilot and checkpoints a pro-
gram in memory, which will be used later.

A.3.2 Basic Test

You can verify the success of the LLVM installation:

$ cd ~/ardupilot_recovery
$./prepare_checkpoint.sh
You may need to enter the sudo passwd

The second script automatically configures the drone,
launches the mission, and opens two panels to display simu-
lation information.

$ llvm-config --version
13.0.1

A.4 Evaluation workflow
A4.1 Major Claims

(C1): Gecko is capable of compartmentalizing and instru-
menting the system while enabling real-time recovery.

(C2): Gecko’s recovery capability allows CPS to recover
from triggered failures.

A.4.2 Experiments

(E1): This verifies the compartmentalization and instru-
mentation processes (C1), which are applied at compile time.
[5 human-minutes + 15 compute-minutes]

Given CPS software such as ArduPilot, Gecko uses com-
mand line instructions to automatically compartmentalize and
instrument the software.

$ cd ~/ardupilot_redcaps/

$./launch_demo.sh

[Gecko] Using the native block.
[Gecko] Using the native block.

Please wait 3-5 minutes for the drone to start executing the
mission, as shown in the figure below:

Figure 1: ArduCopter mission example.

Then, return to your main terminal by detaching from the
current tmux session: press Ctrl+b, then d. Next, you can
run the thrid script, which is designed to trigger a program
crash and then recover it from a checkpoint.

$ cd ~/ardupilot_redcaps/
$./1l_compartmentalization.sh

$./launch_attack_recovery.sh

Result E1-1: The compartmentalization result is in the file
/build/sitl/compartments_result.json. The functions and vari-
ables are partitioned into different compartments (code and
data regions).

Result E2-1: This will cause the program, namely ar-
ducopter, to crash and then restore it from a previously saved
checkpoint. After recovery, the system transitions to a shadow
compartment. This is indicated by continuous logs showing
the use of the recovery block, as shown below:

[Gecko] The task 1s restored !!!
With response time: xxx seconds

[Gecko] Using the recovery block.
[Gecko] Using the recovery block.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

