
USENIX Security ’25 Artifact Appendix: SafeSpeech: Robust and
Universal Voice Protection Against Malicious Speech Synthesis

Zhisheng Zhang1, Derui Wang2 �, Qianyi Yang1, Pengyang Huang1,
Junhan Pu1, Yuxin Cao3, Kai Ye4, Jie Hao1 �, and Yixian Yang1

1Beijing University of Posts and Telecommunications 2CSIRO’s Data61
3National University of Singapore 4The University of Hong Kong

A Artifact Appendix

A.1 Abstract

In our artifact, we provide the source code with a detailed de-
scription of SafeSpeech in the public communities. We have
implemented the algorithmic design of SafeSpeech and open-
sourced our code at https://github.com/wxzyd123/SafeSpeech
on GitHub and https://zenodo.org/records/15118529 on Zen-
odo with the final version. In this artifact, we introduce step-
by-step instructions on reproducing the experimental results
of the main experiments in the paper, including dependence
description, environment installation, data preparation, and
running commands with expected outputs.

A.2 Description & Requirements

We provide minimum hardware and software requirements
for reproducing our experiments.
Hardware Requirements: CPU: a device with 100GB; GPU:
NVIDIA A800 with 80GB memory or other GPU devices
with the same memory.
Software Requirements: Operating system: Linux (Ubuntu
20.04); Python 3.8; PyTorch 2.0.0; CUDA 12.4. The required
Python libraries are provided in requirements.txt.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns in this arti-
fact.

A.2.2 How to access

The source code for SafeSpeech is available on GitHub. You
can download it directly from the repository page or use the
Git tool to clone it. The repository includes the SafeSpeech
implementation and the LibriTTS dataset.

� Corresponding authors: derek.wang@data61.csiro.au,
haojie@bupt.edu.cn.

A.2.3 Hardware dependencies

We recommend a device equipped with the Ubuntu operating
system version 20.04 for hardware configuration. In our tests,
the CPU memory is 100 GB. We recommend using a device
with more than 80GB for the GPU, such as the NVIDIA A800
described in our paper.

A.2.4 Software dependencies

For software configuration, our experiments are conducted in
an environment with Python 3.8, PyTorch 2.0.0, and CUDA
12.4. The SafeSpeech implementation is built on the PyTorch
framework and includes additional Python libraries, which
are specified in the requirements.txt file.

A.2.5 Benchmarks

In this paper, we evaluate the effectiveness, transferability,
and robustness of SafeSpeech primarily on speakers from
the LibriTTS [2] dataset who are most similar to the pre-
trained speakers on BERT-VITS2 [1] model for perturbation
generation and fine-tuning. The original data is provided in
the data/LibriTTS folder within the source code, requiring
no further modifications.

A.3 Set-up

A.3.1 Installation

Our experiments are conducted in a Conda environ-
ment. First, install the CUDA toolkit (version 11.8 or
higher) to ensure proper dependency setup. Then, you
can install the Conda environment from the website
https://www.anaconda.com/download.

For environment creation, we provide the corresponding
instructions in the “Setup” section of the README.

(1): conda create -name safespeech python=3.8:
This command creates a conda environment named
“safespeech” with Python version 3.8.

https://github.com/wxzyd123/SafeSpeech
https://zenodo.org/records/15118529
https://github.com/wxzyd123/SafeSpeech
https://www.anaconda.com/download


(2): conda activate safespeech: This switches to the
“safespeech” conda environment.

(3): pip install -r requirements.txt: This command
installs the necessary Python dependencies required to
run the experiment.

(4): sudo apt install ffmpeg: This command installs
the “ffmpeg” software.

A.3.2 Basic Test

To check whether PyTorch has been successfully installed,
you can try adding the following lines to a .py file with “im-
port torch, touchaudio” and “print(torch.cuda.is_available())”.
Then, run the script. If the command line output is “True”, it
means the basic test has passed.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SafeSpeech achieves the MCD value of 14.771 after
fine-tuning on LibriTTS dataset and the BERT-VITS2
model, reflecting the higher protective performance than
baselines in Table 1;

(C2): The evaluation values of WER and MCD are 99.610%
and 0.204 which are better than baselines.

A.4.2 Experiments

(E1): [Pre-trained Models][1 human-minute + 10 compute-
minutes] For downloading the pre-trained models of the
BERT-VITS2, you can run this command:
Command: python download_models.py;
Output: The downloaded checkpoints.

(E2): [Protection][1 human-minute + 25 compute-minutes]
Since LibriTTS is already available in the GitHub
repository, you can start the experimental evaluation
once the pre-trained models are prepared. The evaluation
process is mainly divided into protection, fine-tuning,
and evaluation.
First, you need to generate the BERT file for each audio
by DeBERTa model:
Command: python bert_gen.py –dataset LibriTTS
–mode clean;
Output: BERT files.
The generated BERT files can be found in the
data/LibriTTS/protected/clean folder. After
obtaining BERT files, the protected audio can be
obtained by:
Command: python protect.py –dataset LibriTTS
–batch-size 27 –mode SPEC;
Output: protective perturbations.

(E3): [Saving][1 human-minute + 2 compute-minutes]
The generated perturbations have been saved to
checkpoints/LibriTTS/noises folder; then you can
add the perturbations to the original audio to get pro-
tected data:
Command: python save_audio.py –mode SPEC –batch-
size 27;
Output: protected audio.
The saved audio files can be found in the folder
data/LibriTTS/protected/SPEC.

(E4): [Fine-tuning][1 human-minute + 20 compute-minutes]
Following the aforementioned commands, the dataset
has been protected. You can utilize these audio files for
fine-tuning. Also, the BERT files need to be generated:
Command: python bert_gen.py –dataset LibriTTS –
mode SPEC;
Output: BERT files.
The generated BERT files of protected audio can be
found at data/LibriTTS/protected/SPEC. Then, you
can fine-tune BERT-VITS2 by:
Command: python train.py –mode SPEC –batch-size
64;
Output: checkpoint of fine-tuning.
The checkpoint of the generator after fine-tuning has
been saved to checkpoints/LibriTTS.

(E5): [Evaluation][1 human-minute + 10 compute-minutes]
The last step of the workflow is an evaluation after fine-
tuning by this command:
Command: python evaluate.py –mode SPEC;
Output: the synthesized results of three metrics.
The synthesized audio can be found in the folder
evaluation/LibriTTS/SPEC and the output informa-
tion is:
Mode SPEC, MCD: XXX
Mode SPEC: GT WER is 0.000000, Syn WER is XXX
Mode SPEC on LibriTTS, SIM XXX, ASR XXX.
These three lines represent the evaluation metrics MCD,
WER (i.e., Syn WER), and SIM, respectively. Your results
may not be the same as ours (MCD 14.771, WER 99.610,
and SIM 0.204), but they should be higher than baselines,
i.e., the values in Table 1, D1 dataset, under the BERT-
VITS2 model, excluding the SPEC row.

Additionally, to facilitate quick validation of SafeSpeech,
we provide a Colab version via Jupyter Notebook that includes
environment setup and experimental replication steps.

A.5 Notes on Reusability

In this artifact, we provide detailed instructions on how to re-
produce SafeSpeech on a new device and environment. All the
pre-trained models and datasets are open-source, and we have
introduced how to download and protect them by SafeSpeech.



A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Bert-vits2. https://github.com/fishaudio/
Bert-VITS2, 2024.

[2] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia,
Z. Chen, and Y. Wu. Libritts: A corpus derived from
librispeech for text-to-speech. arXiv, 2019.

https://secartifacts.github.io/usenixsec2025/
https://github.com/fishaudio/Bert-VITS2
https://github.com/fishaudio/Bert-VITS2

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


