
USENIX Security ’25 Artifact Appendix: Stack Overflow Meets
Replication: Security Research Amid Evolving Code Snippets

Alfusainey Jallow, Sven Bugiel

A Artifact Appendix

A.1 Abstract

The study examines the impact of Stack Overflow code evo-
lution on the stability of prior research findings derived from
Stack Overflow data and provide recommendations for fu-
ture studies. We systematically reviewed papers published
between 2005–2023 to identify key aspects of Stack Overflow
that can affect study results, such as the language or context
of code snippets. Our analysis reveals that certain aspects
are non-stationary over time, which could lead to different
conclusions if experiments are repeated at different times. We
replicated six studies using a more recent dataset to demon-
strate this risk. Our findings show that four papers produced
significantly different results than the original findings, pre-
venting the same conclusions from being drawn with a newer
dataset version. The code and data artifact are permanently
hosted on Zenodo, allowing verification of the claims made
in this study.

A.2 Description & Requirements

Our artifact provides the necessary components to reproduce
the experiments and results presented in our paper. It consists
of two main parts: the source artifact, which includes the code
and environment setup, and the data artifact, which contains
the datasets used in our experiments.

To ensure reproducibility, we have included a require-
ments.txt file that lists all Python dependencies used in the
project. Evaluators should use this file to create a conda envi-
ronment, ensuring the exact setup used for the experiments.
The source artifact is stored on GitLab, and the data artifact
is available on Zenodo.

For reproducibility, evaluators should download the source
code and data from Zenodo. The artifact has been designed to
be run without any security, privacy, or ethical concerns, and
we have ensured that the setup is consistent and reliable for
evaluation.

A.2.1 Security, privacy, and ethical concerns

Our artifact does not pose any security for the evaluators.
There are no destructive steps involved in its execution, nor

are any security mechanisms disabled during its operation.

A.2.2 How to access

The complete artifact for this paper is available on Zen-
odo at the following URL: https://zenodo.org/records/
14733196. Download the archive file and extract its contents
to a local directory.

A.2.3 Hardware dependencies

To run the scripts in the sources/**/analysis directory, we
tested on a machine with 756 GB of RAM and a CPU with
64 cores, along with 3.5 TB of disc space. However, we did
not use all the 3.5 TB space and we believe that a disc space
of 1.5TB would also work. However, to reproduce the major
claims described in Section A.4.1, you only need to run the
scripts in the sources/**/analysis directory. The instruc-
tions for running each experiment to reproduce the major
claims are described in Section A.4.2.

A.2.4 Software dependencies

Our artifact relies on the following software dependencies:

• virtual environment: A software for creating python
virtual environment, e.g., Conda or Venv, is required.

• Docker for creating the MySQL docker container.

• 7-Zip for extracting the artifact archive file stored on
Zenodo.

A.2.5 Benchmarks

We have released the data set required for the experiments
reported in our paper on Zenodo. The data set can be accessed
and downloaded from the following stable URL: https://
zenodo.org/records/14733196.

A.3 Set-up & Installation
Create a fresh virtual environment and install the required
packages using pip. The example below shows how to create
a new conda environment named ‘usenix-ae‘ and install the
required packages:

https://zenodo.org/records/14733196
https://zenodo.org/records/14733196
https://zenodo.org/records/14733196
https://zenodo.org/records/14733196

$ conda create -n usenix-ae python=3.12
$ conda activate usenix-ae
$ pip install -r requirements.txt

Afterward, set up a Docker container with a MySQL server,
according to the following steps, that holds the sotorrent22
database (and the required tables) needed to replicate claims
C1, C7, C13, C14, C15, and C16 described in Section A.4.1.

1. cd into the directory
cd mysql-docker

2. Build the Docker image
$ docker build -t paper403 .

2. Run the container (in detached mode)
$ docker run --name mysql-server -d \
-p 3306:3306 paper403

3. Connect to the DB:
$ docker exec -it mysql-server mysql \
-u sotorrent -psotorrent

Finally, follow the instructions provided in Step 5 of the
Zenodo description to import the necessary database tables.

A.3.1 Basic Test

Once the MySQL server docker container is running, connect
to the server and list all the databases on the server. Confirm
that the sotorrent22 database is listed:

1. Connect to the server
docker exec -it mysql-server mysql -u sotorrent -p

2. List the databases. Confirm that sotorrent22 is listed
$ show databases

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| performance_schema |
| sotorrent22 |
+--------------------+
3 rows in set (0.01 sec)

Finally, confirm that all the database tables have been suc-
cessfully imported into the sotorrent22 database:

mysql> use sotorrent22
mysql> show tables;

+--------------------+
| Tables_in_sotorrent22 |
+--------------------+

| Posts |
| PostHistory |
| Users |
| CppCheckWeakness |
| CrawledPapers |
| DicosResults |
| Violations |
| PostReferenceGH |
+--------------------+

A.4 Evaluation workflow

Below, we outline the key claims in the paper along with
the corresponding experiments to reproduce each claim. The
evaluators identified minor discrepancies for C9 (observed:
30,359, expected: 30,343) and C18: no-dupe-keys under
Parse Errors (PE) violations (observed 874 vs. expected
2,070). These discrepancies have been addressed in the ex-
tended version of the paper, which is available on Arxiv1.

A.4.1 Major Claims

(C1, Optional): Our literature search yielded 42 relevant
studies. This is proven by the experiment (E1) described
in Section 3.2 whose results are reported in Table 1.

(C2): Certain programming languages have exhibited dis-
tinct trends regarding the overall number of added snip-
pets and the ratio of security-relevant edits, with lan-
guages like C/C++ being relatively stable, while others
like JavaScript and Python have fluctuated over time.
This claim is demonstrated by the monthly trends in the
addition of new code snippets shown in Figure 3 and the
analysis of post edits in Figure 4 of Section 5.

(C3): The ratio of security-relevant comments on Stack Over-
flow has steadily increased, suggesting an ongoing com-
munity effort to improve the quality of shared content.
This claim is backed by the data shown in Figure 5, high-
lighting the increasing percentage of security-relevant
commits and comments over time.

(C4, page 8): Code snippets with weaknesses (i.e., Codew)
increased (11,748 ↗ 30,254), indicating a growth rate
of 157.5%.

(C5, page 8): The authors identified 12,998 CWE instances
in the latest versions of 7,481 answers, whereas we found
7,679 instances in 5,721 answers.

(C6, page 8): We noticed a shift in the ranking of CWE types:
CWE-758 climbed 6th ↗ 2nd; CWE-401 dropped 2nd
↘ 3rd; CWE-775 fell 3rd ↘ 7th.

(C7, page 8): As revisions increased from 1 to 3 or more,
the proportion of improved Codew only rose from 3.1%
to 7.4%. This claim is shown on the right-hand side of
Table 7 in Appendix A.

1https://arxiv.org/abs/2501.16948

https://arxiv.org/abs/2501.16948

(C8, page 8 and page 9): We found that the fraction of users
with vulnerable C/C++ snippets more than doubled com-
pared to the original findings. Moreover, the number of
users that contributed just one vulnerable snippet also
increased. Further, the authors reported that users who
contributed multiple vulnerable snippet versions repeat-
edly contributed the same CWE type. We found that these
users contribute different types of CWE with the same
likelihood.

(C9, page 10): Using the same approach on our dataset of
1,046,052 posts, we discovered 30,359 (2.9%) insecure
posts, i.e., an increase of 52%. Among these, 4,887
(16.1%) insecure posts contained all three features, i.e.,
an increase of 155%, while the remaining 25,472 posts
contained two features.

(C10, page 10): We found that DICOS had an 11% precision
(compared to the authors’ 91%), 32% accuracy (versus
89%), and an 87% recall (versus 93%). These results
are shown in Table 4. This low precision and accuracy
indicates that the ability of DICOS to detect insecure
code snippets has decreased significantly.

(C11, page 11): Using the newer version of the SOTorrent
dataset, we observed a higher ratio of insecure posts
between accepted (7.72%) and non-accepted (6.61%)
answers. Figure 10 in Appendix B compares the original
and replication results.

(C12, page 11): The types of security weaknesses detected
in C/C++ code snippets have changed over time, with
memory leaks becoming the most prevalent, replacing
undefined behavior as the dominant issue. This claim is
supported by the comparison of the original and repli-
cation results for RQ3, as seen in Section 6.2.3. Figure
11 in Appendix B compares the original and replication
results.

(C13, page 12): After applying the authors’ filtering crite-
ria, we obtained 12,095 questions containing 72,202
answers, of which 10,140 were accepted answers. This
means the number of code snippets matching the authors’
filtering criteria has dropped since 2018: 529,054 ↘
239,575.

(C14, page 12): Our findings regarding the number of ques-
tions with at least one insecure answer differ signifi-
cantly: 18.1% (out of 10,861) dropped to 4.9% (out of
12,095). Similarly, the percentage of accepted answers
containing at least one insecure snippet also decreased:
9.8% (out of 7,444) ↘ 2.2% (out of 10,139).

(C15, page 12): Although the vulnerability rankings from the
original study remain unchanged, we observed a shift in
the number of affected snippets: code injection increased
(2,319 ↗ 5,734), while insecure cipher (564 ↘ 356),
insecure connection (624 ↘ 276), and data serialization
(153 ↘ 140) all dropped. Like the original study, no
snippets were impacted by XSS vulnerabilities.

(C16, page 12): Like the original study, we also found no sig-

nificant difference between the two user groups. However,
we observed different p−value (0.9 ↗ 6.2) and Cliff’s
delta (0.01 ↗ 0.03) values.

(C17, page 13): The number of violations in JavaScript code
snippets increased from 5,587,357 to 7,385,044, with the
average violations per snippet rising from 11.94 to 28.8.
This claim is supported by the results in Section 6.4.3
(Revisiting RQ1 Findings).

(C18, page 13): Due to Stack Overflow’s evolution, the num-
ber of violations in each category has risen. Further,
the ranking of violations within certain categories has
changed. This claim is supported by the results in Section
6.4.3 (Revisiting RQ2 Findings).

A.4.2 Experiments

For all the experiments described below, make sure to cre-
ate and activate a Python virtual environment based on the
requirements.txt file (see Section A.3). All the experiments
require the virtual environment to be set up and activated. Not
all of the experiments listed below require the MySQL server
Docker container to be running. The claims that do require
the Docker container are C1, C7, C13, C14, C15, and C16.
The other claims do not require the container for verification.
(E1 (Optional)): [Table 1, Section 3.2] [10 mins human-

hour + ≈20 mins compute-time]: The goal of this exper-
iment is to reproduce C1, which pertains to the number
of research studies identified through our systematic lit-
erature review process outlined in Figure 2. The relevant
studies discovered are presented in Table 1, and the aim
of this experiment is to replicate the studies listed in
Table 1.
Preparation: Ensure that the MySQL Server Docker
container is running and that you can connect to the
server as outlined in Section A.3.1. You will also need
access to an OPENAI API Key. The script requires the
API Key and the DB_HOST to be set in the environment
where it is being executed. For example, when running
the script from the terminal, the OPENAI_API_KEY
should be configured in the environment. If the default
database user and password created during the creation
of the docker container is not changed, then the script
will use those credentials to connect to the DB server on
localhost. Otherwise, configure the DB_HOST environ-
ment variable with the server’s IP address.
Execution: Run python relevant_studies.
py
Results: The script will display all the relevant studies
described in Table 1.

(E2): [Section 5] [10 mins human-hour + ≈15 mins
compute-time]: The goal of this experiment is to repro-
duce claims C2 and C3, which pertains to the statistics
about the evolution of code and their surrounding context
(i.e., comments and commit messages) on Stack Overflow.

The claims and statistics supporting them are described
in Section 5.
Preparation: Ensure that the virtual environ-
ment is activated and contains all the packages
listed in the requirements.txt file. Also ensure
that the data directory is located in its proper
location and contains all necessary files. All re-
lated scripts for this experiment are located in the
sources/5_evolution_of_stackoverflow
directory.
Execution: Run all the code cells in the
Evolution.ipynb and PCS.ipynb
Jupyter notebooks, which is found in the
5_evolution_of_stackoverflow folder.
The notebooks include direct quotes from the paper
in markdown cells, with the corresponding code to
reproduce each quote provided right after it.
Results: Each code cell in the notebook, once executed,
will reproduce the claims C2 and C3 described in Section
5 of the paper.

(E3): [Section 6.1] [10 mins human-hour + ≈20 mins
compute-time]: The goal of this experiment is to demon-
strate how claims C4, C5, C6, C7, and C8 described in
Section 6.1 can be reproduced.
Preparation: Ensure that the virtual environment is ac-
tivated and contains all the packages listed in the require-
ments.txt file. The table_7.py script connects and
queries the sotorrent22 database running in the MySQL
Server docker container. All related scripts for this exper-
iment are located in the case_study_1/analysis
directory.
Execution: Execute the following scripts to reproduce
the findings for each claim.

C4: Execute the main() function inside the
table_2.ipynb Jupyter notebook.

(C5, C6): Execute all code cells inside the
RQ1_RQ2.ipynb Jupyter notebook.

C7 Run python table_7.py

C8 Study and execute all code cells of the
Zhang.ipynb Jupyter notebook. The note-
book includes direct quotes from the paper, with
the corresponding code to reproduce each quote
provided right after it.

Results: Executing the scripts described above will re-
produce claims C4, C5, C6, C7 and C8.

(E4): [Section 6.2] [10 mins human-hour + ≈20 mins
compute-time]: The goal of this experiment is to demon-
strate how claims C9, C10, C11 and C12 described in
Section 6.2 can be reproduced.
Preparation: Ensure that the virtual environment is ac-
tivated and contains all the packages listed in the re-
quirements.txt file. All related scripts for this experi-
ment are located in the case_study_2/analysis

directory. The results for Claim C10 were obtained
through manual labeling conducted by two researchers.
The data/dicos_discovery_accuracy.xlsx
CSV file includes multiple tabs, each containing the cod-
ing label results for each task. The Discovery Accuracy
tab includes the results for the precision, accuracy, and
recall calculations.
Execution:
(C9, C11, C12): Run all the code cells in the

main.ipynb Jupyter notebook, which is
found in the case_study_2/analysis direc-
tory. The notebook includes direct quotes from the
paper in markdown cells, with the corresponding
code to reproduce each quote provided right after
it.

(C10): There is no Python script to run in order to ver-
ify this claim. Instead, the results of this experi-
ment can be found in the Discovery Accuracy tab
of the data/dicos_discovery_accuracy.xlsx
CSV file.

Results: Each execution of the python script will repro-
duce the findings for each claim.

(E5): [Section 6.3] [10 mins human-hour + ≈10 mins
compute-time]: The goal of this experiment is to demon-
strate how claims C13, C14, C15, and C16 described on
page 12 in Section 6.4 can be reproduced.
Preparation: This experiment utilizes scripts that re-
quire DB server credentials to connect to and query
the sotorrent22 database. The scripts expect the envi-
ronment variables DB_USER and DB_PASSWORD to
be set, containing the database username and pass-
word. These variables will be used by the script to
connect to the MySQL Server Docker container, with
the default host set to localhost (127.0.0.1). All related
scripts for this experiment are located in the directory
case_study_3/analysis.
Execution: Execute the following scripts to reproduce
the findings for each claim.
C13: Execute the code cells in

general_stats.ipynb

C14: python revisiting_RQ1_findings.
py insecure_post_stats

C15 python revisiting_RQ1_findings.py
rankings

C16 python revisiting_RQ2_findings.py

Results: Each execution of the python script will repro-
duce the findings for each claim.

(E6): [Section 6.4] [10 mins human-hour + ≈10 mins
compute-time]: The goal of this experiment is to re-
produce claims C17 and C18, described on page 12
in Section 6.4.
Preparation: Ensure that the virtual environ-
ment is activated and contains all the packages

listed in the requirements.txt file. This exper-
iment uses the violations.feather and
rule_categories.feather files located in the
data/feather_files directory.
Execution: Run all the code cells in the
main.ipynb Jupyter notebook, which is found
in the case_study_4/analysis directory. The
notebook includes direct quotes from the paper in
markdown cells, with the corresponding code to
reproduce each quote provided right after it.
Results: Each code cell in the notebook, once executed,
will reproduce claims C17 and C18.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up & Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

