
USENIX Security ’25 Artifact Appendix: “Whispering Under the Eaves:
Protecting User Privacy Against Commercial and LLM-powered

Automatic Speech Recognition Systems”

Weifei Jin†, Yuxin Cao‡, Junjie Su†, Derui Wang§, Yedi Zhang‡, Minhui Xue§,
Jie Hao†, Jin Song Dong‡, Yixian Yang†

†Beijing University of Posts and Telecommunications ‡ National University of Singapore § CSIRO’s Data61

A Artifact Appendix

A.1 Abstract

Our paper proposes a framework for protecting the privacy
of voice communications, AudioShield, whose core is the
Transferable Universal Adversarial Perturbation in the Latent
Space (LS-TUAP). This artifact appendix provides a roadmap
for reproducing the following three main claims in our paper:

• (C1) Real-time Requirement: We have implemented
the universality of LS-TUAP, which means that our ad-
versarial perturbation is input-agnostic, making it effec-
tive for any input audio without needing to optimize a
separate perturbation for each audio input. This avoids
the time-consuming process of optimizing a perturba-
tion for each individual audio input, thus meeting the
real-time requirement.

• (C2) Model-agnostic Requirement: We have imple-
mented the transferability of LS-TUAP, meaning that
our perturbation does not rely on local surrogate models
and remains effective for unseen ASR models.

• (C3) High-quality Requirement: We do not introduce
noise in the original audio space, so the adversarial ex-
amples generated by our LS-TUAP maintain high audio
quality. This is a significant advantage distinguishing
our method from existing approaches.

A.2 Description & Requirements

This appendix recommends using the state-of-the-art (SOTA)
NN-based ASR model, Whisper-large-v3 [5], along with
2000 randomly selected audio samples from the full test
dataset for reproduction. You can conveniently reproduce
our results on your own machine, provided that it meets the
following dependencies.

A.2.1 Security, privacy, and ethical concerns

Our artifact does not actively cause any damage to the evalua-
tors’ devices.

A.2.2 How to access

• For the latest source code, please download it
from our GitHub repository: https://github.com/
WeifeiJin/AudioShield.

• The complete training dataset (500 samples from Lib-
riSpeech [4]), the test dataset (2000 samples from
the VCTK Corpus [6]), and the pretrained VITS [2]
and DeepSpeech [1] models are included in our
Zenodo release: https://doi.org/10.5281/zenodo.
14711220.

Our method requires the VITS model and the DeepSpeech
model during training, both of which are provided in our
Zenodo artifact. Additionally, this appendix recommends us-
ing the Whisper-large-v3 model for testing, which can be
downloaded using the download_whisper.py script or from
https://huggingface.co/openai/whisper-large-v3.

A.2.3 Hardware dependencies

Our artifact has been tested on the following hardware: an
NVIDIA GeForce RTX 4090 GPU and an Intel(R) Xeon(R)
Platinum 8352V CPU @ 2.10GHz. We recommend using this
hardware configuration for evaluation. If you cannot meet this
requirement, please ensure that your GPU has at least 16GB
of VRAM.

A.2.4 Software dependencies

The software environment includes Ubuntu 20.04, eSpeak,
Python 3.8, CUDA 12.2, and PyTorch 2.2.2. Additionally, all
required Python libraries are listed in the requirements.txt
file of our Github artifact.

https://github.com/WeifeiJin/AudioShield
https://github.com/WeifeiJin/AudioShield
https://doi.org/10.5281/zenodo.14711220
https://doi.org/10.5281/zenodo.14711220
https://huggingface.co/openai/whisper-large-v3


A.2.5 Benchmarks

The training dataset (500 samples from LibriSpeech) and the
testing dataset (2000 samples from VCTK) are both provided
in our artifact.

A.3 Set-up
To prepare the environment for evaluating the artifact, a server
with at least the minimum hardware configuration is required.
Then, simply follow the commands provided in the GitHub
release to set up the necessary environment.

A.3.1 Installation

The installation steps for the required dependencies are de-
tailed in the README file of our GitHub-released artifact.
Please carefully read its Setup section and follow the steps
accordingly. You may verify the installation by checking the
following key steps:

• Install eSpeak using apt, a software for text-to-speech.

• Create a Conda environment and install dependencies
from requirements.txt.

• Build Monotonic Alignment Search for the VITS model.

Additionally, ensure that you have downloaded the required
pretrained models: VITS, DeepSpeech, and Whisper-large-
v3. Place them in the following directories:

• pretrained/vits

• pretrained/deepspeech

• pretrained/whisper-large-v3

Moreover, place the pickle files (with suffix .pkl)
of the two datasets in the datasets folder. Ensure
that these paths are consistent with those specified in
configs/protection.json (they should match by default,
but if you modify them, ensure consistency).

A.3.2 Basic Test

Once the environment is set up, run the train.py file from
the root directory. If no errors occur, the dependencies have
been successfully installed.

A.4 Evaluation workflow
The core parts of the artifact are the following two files, which
enable the evaluation of functionality and reproducibility:

• train.py: Provides the training process for LS-TUAP,
which is the core of our method.

• eval.py: Provides the evaluation process for LS-TUAP,
and the experimental results will support our main
claims.

A.4.1 Major Claims

Please refer to Section A.1 for a detailed recap of our claims.
Mainly, we have claimed that:
(C1): Real-time Requirement: Our LS-TUAP is general

and effective for any audio, thus meeting real-time re-
quirements.

(C2): Model-agnostic Requirement Our LS-TUAP is not
limited to local surrogate models and is effective for
unseen models.

(C3): High-quality Requirement The adversarial samples
we generate maintain high audio quality.

A.4.2 Experiments

(E1): [Training] [10 human-minutes + 30 compute-hour]:
This stage prepares the LS-TUAPfor the subsequent eval-
uation phase.
How to: You can directly run python train.py to
train the LS-TUAP using default parameters.
Preparation: Make sure you have the training dataset
prepared, and that the pretrained VITS and DeepSpeech
models are downloaded and placed in the corresponding
folders as described in Section A.3.1.
Execution: We recommend training for 3 epochs, al-
though this process will take approximately 30 hours.
For the convenience of quick evaluation, we have pro-
vided a pretrained LS-TUAP model in our GitHub arti-
fact, and you can opt to use the pretrained LS-TUAP for
evaluation directly.
Results: You will get a well-trained perturbation file
named LS-TUAP.pth.

(E2): [Evaluation] [1 human-minute + 30 compute-
minutes]: This is the critical evaluation process.
How to: You can directly run python eval.py to
evaluate AudioShield using the default parameters.
Preparation: Ensure that the test dataset is ready, and
that the test model Whisper-large-v3 is down-
loaded and placed in the appropriate folder as described
in Section A.3.1.
Execution: We recommend training for 3 epochs, al-
though this process will take approximately 30 hours.
For the convenience of quick evaluation, we have pro-
vided a pretrained LS-TUAP model in our GitHub arti-
fact, and you can opt to use the pretrained LS-TUAP for
evaluation directly.
Results: Combine the above evaluation process and
results, and check whether they support the three main
claims in Section 1 as described below:

• (C1) Real-time Requirement: This means univer-
sality—our LS-TUAP is effective for any input au-
dio. You can observe that, during the evaluation
process, the same LS-TUAP is used for all input au-
dio, eliminating the need to optimize a perturbation



for each audio individually, thus meeting real-time
requirements.

• (C2) Model-agnostic Requirement: We trained
the ASR model with DeepSpeech, and tested it with
Whisper. The PSR, CER, and WER results you ob-
tain in the evaluation should generally match those
in Table 6 (due to the inherent randomness of the
Whisper model, there may be some variability in
results each time it is run).

• (C3) High-quality Requirement: We used the
SOTA speech quality assessment model NISQA [3]
for evaluation. The results should generally match
those presented in Table 7, with our NISQA score
always above 2.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech
2: End-to-end speech recognition in english and mandarin. In
International conference on machine learning, pages 173–182.
PMLR, 2016.

[2] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional vari-
ational autoencoder with adversarial learning for end-to-end
text-to-speech. In International Conference on Machine Learn-
ing, pages 5530–5540. PMLR, 2021.

[3] Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and Sebastian
Möller. Nisqa: A deep cnn-self-attention model for multidimen-
sional speech quality prediction with crowdsourced datasets.
arXiv preprint arXiv:2104.09494, 2021.

[4] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur. Librispeech: an asr corpus based on public domain
audio books. In 2015 IEEE international conference on acous-
tics, speech and signal processing (ICASSP), pages 5206–5210.
IEEE, 2015.

[5] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Chris-
tine McLeavey, and Ilya Sutskever. Robust speech recognition
via large-scale weak supervision. In International conference
on machine learning, pages 28492–28518. PMLR, 2023.

[6] Junichi Yamagishi, Christophe Veaux, Kirsten MacDonald, et al.
Cstr vctk corpus: English multi-speaker corpus for cstr voice
cloning toolkit (version 0.92). University of Edinburgh. The
Centre for Speech Technology Research (CSTR), 2019.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


