
USENIX Security ’25 Artifact Appendix: Await() a Second: Evading
Control Flow Integrity by Hijacking C++ Coroutines

Marcos Bajo
CISPA Helmholtz Center
for Information Security

Christian Rossow
CISPA Helmholtz Center
for Information Security

A Artifact Appendix

A.1 Abstract
This appendix describes the artifacts from our paper on Corou-
tine Frame-Oriented Programming (CFOP), a novel code
reuse attack that exploits vulnerabilities in C++ coroutines.
CFOP enables attackers to hijack program execution and ma-
nipulate data, even in CFI-protected environments.

Our artifact collection consists of four PoC CFOP exploits
on sample programs:

• gcc: showcases how to call arbitrary functions with ar-
bitrary arguments using a silver gadget in a program
compiled with GCC.

• clang: showcases how to call arbitrary functions with
arbitrary arguments using a silver gadget in a program
compiled with Clang/LLVM.

• msvc: showcases how to call arbitrary functions with
arbitrary arguments in Windows, compiled with MSVC.

• doa: showcases how to leverage a Data Only Attack
(DOA) for altering the program execution without hi-
jacking any frame pointers, reading from an arbitrary
file and compiled with GCC.

In addition, we showcase two CFOP exploits in real-world
programs:

• vulnerable_serenityos: an exploit for SerenityOS after
reintroducing the CVE-2021-4327 vulnerability. Show-
cases Infinite Coroutine Chaining (ICC).

• vulnerable_scylladb: an exploit for ScyllaDB with an
incorporated vulnerability and a modification in the
database client to exploit it. Showcases golden gadgets
to call arbitrary functions with arbitrary arguments.

Every artifact program has been compiled with Intel CET
(and Control Flow Guard (CFG) for msvc). Therefore, the
exploits work while considering the restrictions introduced
by these schemes: 1) return addresses in the stack can never
be modified, and 2) the control flow cannot be redirected to
any address that is not the start of a function.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifacts do not pose any security, privacy, or ethical risks
for evaluators while executing them. The provided exploits
are limited to the programs we prepared and do not perform
any destructive actions.

A.2.2 How to access

We provide access to every previously described artifact in
our in our Zenodo record (10.5281/zenodo.14738035) and
our GitHub repository. The contained README files provide
an overview of the artifacts and how to run them.

A.2.3 Hardware dependencies

Our artifacts are prepared to run on standard x86-64 machines
and do not require any special hardware features. The exploits
are designed to circumvent Intel CET and CFG restrictions
and can be tested on any modern Windows/Linux machine
(see A.2.4); we do not require evaluators to run them on a
machine with CET support.

Optionally running the artifacts with an active enforcement
of these schemes requires additional hardware support. Specif-
ically, evaluators need a CPU with Intel CET support, that
is, Intel Tiger Lake (11th gen) or newer. We recommend a
machine with at least 8GB of RAM to compile ScyllaDB and
SerenityOS smoothly; we used a machine with 32GB of RAM
and a 20-core i9-12900H CPU for our experiments. Around
50 GB of free disk space are needed in total throughout the
experiments.

For the purpose of evaluating the artifacts in an environ-
ment that meets every hardware and software requirement
(including the optional active CET enforcement), we pro-
vide access to our testing machine via SSH. This machine
is restricted for evaluators during the USENIX artifact eval-
uation period and will be disabled after the evaluation. We
incorporate to this artifact submission a WireGuard VPN con-
figuration file to access the machine. The file AECONNECT.md

https://doi.org/10.5281/zenodo.14738035
https://github.com/coroutine-cfop/cfop


in the repository provides instructions on how to connect to
the machine.

A.2.4 Software dependencies

The artifacts have been tested Ubuntu 24.04 and Windows 11
(only for msvc).

Every exploit is prepared to run inside a Docker container
and can be tested on any Linux distribution with Docker
installed; specific software requirements for every artifact are
automatically met inside each container. The exception is the
Windows msvc exploit, that requires a Windows 10 or newer
machine with MSVC installed.

A.2.5 Benchmarks

None.

A.3 Set-up
Every artifact in our collection includes its own README
file (six in total) with detailed instructions on how to set up
their own environment and run the corresponding exploit.

A.3.1 Installation

Docker is required to run the artifacts. For the Windows msvc
exploit, Python3 is also required. Since each of the six artifacts
are independent, here we detail the process of running the gcc
exploit as an example.

We recommend running the artifacts in our experimental
machine. Alternatively, to kickstart this evaluation, clone the
repository and install Docker in any Linux machine.

A.3.2 Basic Test

1. Build the docker image:

docker build -t cfop_gcc_poc .

2. Run the docker container

docker run -privileged -security-opt
seccomp=unconfined -it cfop_gcc_poc

3. Once inside the container, navigate to where the PoC
files are saved

cd opt/pocs/

4. Compile the coroutine program

make

5. Run the exploit script

python3 gccpocexploit.py

A successful exploitation results in the program printing
"ARBITRARY CODE EXECUTION!" on screen, even when
this code was not present in the original program.

A.4 Evaluation workflow

A.4.1 Major Claims

Our major claims are:
(C1): CFOP techniques can be used to exploit programs com-

piled with the latest versions of the three major compil-
ers: GCC, Clang/LLVM, and MSVC.

(C2): Exploits using CFOP work while considering the re-
strictions introduced by Intel CET and Control Flow
Guard CFI schemes: 1) return addresses in the stack can
never be modified, and 2) control flow cannot be redi-
rected to any address that is not the start of a function.

A.4.2 Experiments

We recommend following the steps detailed in the README
of each artifact to reproduce the results of the paper.
(E1): [gcc] [5 human-mins + 1 compute-mins + 4GB disk]:

Preparation: Follow steps 1 to 4 at A.3.2.
Execution: Run the exploit script using python3
gccpocexploit.py.
Results: The program should print "ARBITRARY
CODE EXECUTION!" on screen.

(E2): [clang] [5 human-mins + 1 compute-mins + 4GB
disk]:
Preparation: Build the Docker image using docker
build -t cfop_clang_poc .; run the container
using docker run -privileged -security-opt
seccomp=unconfined -it cfop_clang_poc; navi-
gate to the PoC files using cd opt/pocs/; and compile
the coroutine program using make.
Execution: Run the exploit script using python3
clangpocexploit.py.
Results: The program should print "ARBITRARY
CODE EXECUTION!" on screen.

(E3): [msvc] [5 human-mins + 1 compute-mins + 1GB disk]:
Preparation: Acquire a Windows 10 or Windows 11
system. Install Python3. If necessary, update the path
where the .exe file is located in line 10 of the scripts
msvc_silver_exploit.py and msvc_call_exploit.py.
Execution: Run the first exploit using python3
msvc_call_exploit.py. Then, run the second exploit
using python3 msvc_silver_exploit.py.
Results: For the first exploit, the calculator program
(calc.exe) gets executed. For the second exploit, the pa-
rameters values are printed on screen with clearly arbi-
trary values (e.g., 0x4242424242424242).

(E4): [doa] [5 human-mins + 1 compute-mins + 4GB disk]:
Preparation: Build the Docker image using docker
build -t cfop_doa_poc .; run the container us-
ing docker run -privileged -security-opt
seccomp=unconfined -it cfop_doa_poc; navigate
to the PoC files using cd opt/pocs/; and compile the
coroutine program using make.



Execution: Run the exploit script using python3
fileopening.py.
Results: The program prints the contents of the file
/etc/hosts on screen, even when this filename was not
present in the original program.

(E5): [vulnerable_serenityos] [10 human-mins + 30
compute-mins + 22GB disk]:
Preparation: We release the modified source code re-
sponsible of building SerenityOS with the CVE-2021-
4327 vulnerability. With the goal of simplifying testing,
we build and run the Ladybird inside a Ubuntu 24.04
docker - for which we provide the corresponding Dock-
erfile. If not using our experimental machine, since Lady-
bird is a program with a GUI, we recommend installing
X-Server or a similar system in the host system. Our
Docker container takes care of the rest of dependencies.
Execution: Build the Docker image using sudo
docker build -t vulnerable-serenityos .; run
the docker container and attach to it (this command
is long and can be found in the README file);
once in the container, you can build and run Ladybird
./Meta/serenity.sh run lagom ladybird;
Once Ladybird is running, the GUI will be shown in
screen. At this moment, we can navigate to the URL
file:///cfop/Base/home/anon/exploit.html. Upon visiting
this website, the command line will leak some address.
This address is needed to be entered in the browser input
as to run the exploit.
Results: As a result of running the exploit, the name
of the current user will be printed on screen three times
(executing execve("whoami")).

(E6): [vulnerable_scylladb] [10 human-mins + 40 compute-
mins + 34GB disk]:
Preparation: ScyllaDB is made of numerous submod-
ules - hosted in multiple repositories. In addition, its
internal build system depends on such submodules for
querying additional files at runtime, so it is not possible
to offload all the code of ScyllaDB to one single repos-
itory. For this reason, our build system consists of 1)
A cfop_setup.sh script, that clones a certain version of
ScyllaDB from its official GitHub repository, patches the
code with our vulnerability and exploit, and then builds
ScyllaDB; and 2) a folder cfop_mods that incorporates
the files that patch scyllaDB.
A particular OS version is not needed to run ScyllaDB;
every dependency is included in its internal docker setup.
Execution: Run the build script cfop_setup.sh. As a re-
sult, you will have a new repository vulnerable_scylladb;
compile ScyllaDB inside the docker container (command
can be found in the README, as it is long); attach to
the docker container using podman container attach
<id>; run ScyllaDB from inside the container us-
ing ./build/release/scylla -workdir tmp -smp
8 -memory 4G -developer-mode=1;

Once the ScyllaDB instance is running, we can launch
the client program and trigger the exploit: python3
tools/cqlsh/bin/cqlsh.py; after it asks for input, in-
troduce EXPLOITPAYLOAD;.
Results: Upon sending the previous input, the Scyl-
laDB instance will stop and show the current user’s
name on screen (as it runs *execve("bin/sh", "-c /us-
r/bin/whoami")*).

A.5 Notes on Reusability
The exploits we provide are representative of the attacks de-
scribe in the paper and showcase every Coroutine Frame Ori-
ented Programming (CFOP) technique. We intend that these
exploits serve as a starting point for replicating the attacks in
other programs.

Here we detail which exploits showcase which CFOP tech-
nique, serving as a reference for future testers. We recommend
consulting the corresponding exploit code to help develop ex-
ploits for other coroutine programs:

• gcc: Silver gadgets for arbitrary calls with multiple arbi-
trary arguments in GCC.

• clang: Silver gadgets for arbitrary calls with multiple
arbitrary arguments in Clang/LLVM.

• msvc: Silver gadgets for arbitrary calls with multiple
arbitrary arguments in MSVC.

• doa: Data Only Attack (DOA) for altering the program
execution without hijacking any frame pointers.

• vulnerable_serenityos: Infinite Coroutine Chaining
(ICC) for multiple arbitrary calls.

• vulnerable_scylladb: Golden Gadgets for arbitrary calls
with arbitrary arguments.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


