
USENIX Security ’25 Artifact Appendix: FIXX: FInding eXploits from
eXamples

Neil P Thimmaiah
University of Illinois Chicago

npemma2@uic.edu

Yashashvi J Dave
University of Illinois Chicago
yashashvidave@gmail.com

Rigel Gjomemo
University of Illinois Chicago

rgjome1@uic.edu

V.N. Venkatakrishnan
University of Illinois Chicago

venkat@uic.edu

A Artifact Appendix

This artifact appendix is meant to be a self-contained doc-
ument which describes a roadmap for the evaluation of our
novel approach FIXX. It includes a description containing all
the software requirements that should be met before proceed-
ing to run FIXX. This appendix also contains details on how
to set up your environment to run FIXX.

A.1 Abstract

FInding eXploits from eXamples (FIXX) is a novel approach
focused on detecting taint-style vulnerabilities in PHP appli-
cations. Using important information from a CVE containing
details regarding a vulnerability in an application, our method
aims to discover possible similar vulnerabilities in the corre-
sponding application. This artifact contains details on how
FIXX can be used to analyze web applications and detect
vulnerable paths similar to a previously known vulnerable
path. It contains all the requirements needed to set up the
environment, as well as details on how FIXX can be installed.
Finally, the major claims of the paper have been discussed,
and detailed experiments on how these claims can be repro-
duced.

A.2 Description & Requirements

In this section, we describe the artifact used to run FIXX as
well as discuss the requirements needed to run the artifact.
Our approach, FIXX, can detect similar exploitable paths
in a web application that are similar to a previously known
vulnerable path in the corresponding application. FIXX is
primarily written in Python and requires certain libraries and
packages to perform its analysis. We have discussed each of
these dependencies in the subsections below.

A.2.1 Security, privacy, and ethical concerns

FIXX does not pose any security or data privacy concerns
when it’s being used to discover exploitable paths in a
given application. A minor concern: during the primary pre-
requisite step of FIXX’s analysis, which involves reproducing
the exploit wherever possible for applications to be analyzed,
the evaluators should not use personal information when at-
tempting to create accounts during the installation of applica-
tions.

A.2.2 How to access

Our artifact can be accessed using the following URL:
https://doi.org/10.5281/zenodo.14738531

A.2.3 Hardware dependencies

There are no hardware dependencies required to run FIXX.

A.2.4 Software dependencies

The artifact required to run FIXX does require certain soft-
ware packages and libraries to be installed to perform the
analysis. The most important thing to note here is the artifact
should be run inside a docker container. To make it easier, we
have provided a docker image that contains all the require-
ments needed to create a new docker container that supports
the analysis. We have outlined all the requirements in a docker
file called docker-compose.yaml as well as provided instruc-
tions on how to retrieve our docker image from Docker Hub in
the subsection Set Up. We have also included all the packages
in the respective files of the code so that there is no additional
error while installing FIXX. Finally, in order to fine-tune the
GPT4 model with your own custom key, the library openai
needs to be installed.

https://doi.org/10.5281/zenodo.14738531


A.2.5 Benchmarks

FIXX doesn’t require any dataset to run the primary results
presented in the paper. However, to obtain the precise met-
rics of the GPT4 model reported in our paper, the evaluators
are required to create a personalized GPT4 model and fine-
tune it with 50 CVE descriptions. While we have provided
the model ID used to obtain the results presented in the pa-
per, OpenAI prevents the sharing of API keys and disables
them when they are uploaded to digital repositories. However,
we have provided a dataset of 50 unique CVE descriptions
that the evaluators can use to fine-tune their custom GPT4
model. Once that is complete, the authors can use any of the
CVEs reported in Table 2 of our paper to test their model and
reproduce the metrics reported in the paper.

Additionally, FIXX requires the request data as well as the
malicious payload that is sent as input to every application
when performing the analysis. We have provided a detailed
table within our artifact that contains the corresponding files
for each of the applications discussed in our paper. Lastly,
since FIXX detects similar vulnerabilities to a known vulner-
ability, while not mandatory for all applications, the exploit
must be thoroughly reproduced in order for FIXX to be able
to discover accurately the other similar paths in the applica-
tion. This could be inputting the malicious payload into the
vulnerable parameter, inserting the payload into the database,
etc. We have provided a detailed example within our artifact
pertaining to this.

A.3 Set-up
The following steps detail all the requirements needed to set
up your environment to run FIXX:
Docker Image : Obtain the image neildocker693/fixx from

Docker Hub. The image can be pulled using the com-
mand: docker pull neildocker693/fixx. This image
should have all the requirements required to run FIXX.

Docker Container : Once the image has been pulled, you
can build the container using the command: docker-
compose up -d fixx. This will create and start the con-
tainer. You can verify that the container is running using
the command: docker ps

Docker SSH : Finally, you can ssh into the created container
using the command: docker exec -it fixx /bash/bin

Please note that if you encounter an error associated with the
neo4j database not being available, check the corresponding
database name that was loaded and make sure it matches the
name of the application you are trying to process. Please
refer to the README provided in the zip file of FIXX for
troubleshooting such errors.

A.3.1 Installation

Once the artifact has been downloaded from the URL pro-
vided in Section A.2.2, unzip and extract its contents into

the /opt/project/FIXX/ directory specified inside the docker
container.

A.3.2 Basic Test

To test whether the docker container has been set up accord-
ing to the requirements, you can run the command: python
fixx_main.py -n <application_name> –loadcpg, which will
load the code property graph (CPG) of the corresponding
application. Note that if you are analyzing an application out-
side of the ones provided within our artifact, you will need to
build the CPG of the application. This can be done using the
command: python fixx_main.py -n <application_name>
–buildcpg. Once the CPG of the application has been loaded,
please refer to the README file within our artifact for a few
intermediate steps before analyzing the applications using
FIXX.

A.4 Evaluation workflow

We represent the main claims made by the paper and outline
the steps needed to be followed to reproduce the results to
validate those claims in the following subsections:

A.4.1 Major Claims

In this section, we provide the major claims made in our paper,
along with the corresponding experiments that can done to
reproduce the results of these claims.
(C1): FIXX can extract the most reused and sensitive instruc-

tions in a given PHP application, referred to as seeds, by
computing their average reusability scores, sensitivity
scores as well as selection scores. This is proven by the
experiment (E1) in Section 5 whose results are described
in column 1, 2 and 3 of Table 2 in the paper.

(C2): FIXX discovers multiple similar nodes at a specified
similarity modulo for the maximum number of seeds
(1–4) for each of the selected PHP applications. This
is proven by the experiment (E2) in Section 5 whose
results are described in column 4 of Table 3.

(C3): FIXX detects multiple similar paths (sPaths and
dPaths) at the same similarity modulo value for each of
the obtained similar nodes at a specified similarity thresh-
old for the selected PHP applications. This is proven by
the experiment (E3) in Section 5 whose results are de-
scribed in column 5 of Table 2 as well as column 5 and
column 6 of Table 3 respectively.

(C4): FIXX detects multiple new exploitable paths, 10 of
which have been reported to MITRE and published as
new CVEs. This is proven by the experiment (E4) in
Section 5 whose results are described in column 7 and
column 9 of Table 3.

(C5): FIXX can rediscover the original exploitable path de-
scribed in the vulnerability of a given application by



using the newfound sPaths and dPaths. This is proven
by the experiment (E5) in Section 5 whose results are
described in column 8 of Table 3.

A.4.2 Experiments

In this section, we provide a detailed set of experiments that
can help reproduce the results reported in the paper and sup-
port the claims made in the previous section. We also provide
the running times for each of the experiments. Please note
that since our approach has been evaluated on 19 unique PHP
CVEs, we have provided an approximate compute time and
human time for all the applications combined, which also
includes a bit of manual work when switching between appli-
cations described in the CVEs. Finally, for any reported initial
CVE in the paper, we recommend verifying all the claims as-
sociated with that CVE before proceeding with another CVE
to save time and effort.
(E1): [Seed Scores] [2 computed hours + 1 human hour]:

This experiment will aim to obtain the maximum number
of seeds (1–4) for each of the applications as well as
compute their reusability, sensitivity and selection scores
as described in Table 2. By reproducing these results,
the claim C1 can be verified.
How to: To run this experiment, you will need the com-
mand python fixx_main.py -n <application_name>
–seedanalysis -vulnerablefile <vulnerable_file_name>
-seeds 4. Note that, as mentioned in the paper, certain ap-
plications have limited seeds, so you will need to reduce
the seeds for a few of them accordingly. The maximum
number of seeds for each of the applications can be found
in column 5 of Table 2.
Preparation: To prepare FIXX to perform this analysis
for a given application, we need to load the correspond-
ing Code Property Graph (CPG) of the application in
the docker container. This can be done using the com-
mand python fixx_main.py -n <application_name>
–loadcpg. Next, make sure to obtain the execution trace
of the vulnerable file according to the CVE description of
that application. Please refer to the provided README
on how to gather the execution trace before analyzing
an application. Once the CPG has been loaded and the
execution trace has been collected, you can proceed to
execute the experiment.
Execution: Run the command provided in the How to,
which will compute the total number of seeds, i.e., 4,
which was used to evaluate the applications in our paper,
as well the average reusability scores, sensitivity scores
and selection scores for each of them. Note that you are
free to evaluate any of the applications on any number of
seeds. The higher the number of seeds, the more instruc-
tions, although less sensitive, will be considered when
computing similar paths
Results: Once FIXX has extracted the seeds and com-

puted the corresponding scores for them, the results will
be stored in the /results/seed_results.txt file. This file will
contain the location for each of the 4 requested seeds in
the corresponding application, as well as their reusabil-
ity, sensitivity, and selection scores. Finally, the average
scores can be found at the end of the file, which can be
compared to the results in columns 1, 2, and 3 of Table
2 in our paper.

(E2): [Similar Nodes Detection] [2 computed hours + 1
human-hour]: This experiment will aim to obtain unique,
similar instructions at a specified similarity modulo for
each of the detected seeds.
How to: To run this experiment, you will need
the command python fixx_main.py -n <applica-
tion_name> –computesimilarnodes -vulnerablefile
<vulnerable_file_name> -seeds 4 -modulo 2.
Preparation: To evaluate our claim, a modulo of 2 can
be used. However, FIXX accepts any positive modulo,
including 0.
Execution: Run the command provided in the How to,
which will compute the total number of unique, similar
instructions at a modulo 2 for each of the 1–4 seeds,
depending on the application, which was used to eval-
uate the applications in our paper. Note that you are
free to evaluate any of the applications on any modulo.
The higher the modulo, the lesser the similarity between
instructions being considered by FIXX
Results: The sim_nodes_results.txt file inside the re-
sults folder can be viewed to verify the different similar
instructions along wth their location in the application
that have been detected by FIXX. These results corre-
spond to column 4 in Table 3 of our paper.

(E3): [Path Detection] [15 compute-hour + 10-12 human-
hours]: This experiment will aim to obtain the sPaths
and dPaths reported in column 5 of Table 2 and column
5, 6 of Table 3.
How to: To run this experiment, you will need
the command python fixx_main.py -n <applica-
tion_name> –detectsimilarpaths -vulnerablefile <vul-
nerable_file_name> -seeds 4 -modulo 2 -threshold
50.
Preparation: To evaluate our claim, a threshold value
of 50 must be used. However, FIXX accepts any thresh-
old values between 0 and 100 (both included)
Execution: Run the command provided in the How
to, which will compute the total number of sPaths and
dPaths at a similarity modulo of 2 and a threshold of 50
for each of the 1–4 seeds and detected similar instruc-
tions, depending on the application, which was used to
evaluate the applications in our paper. Note that this step
can take a while, depending on the size of the appli-
cation. For the extremely large applications SeoPanel
and Collabtive, we have written additional code in the
fixx_similar_exploits_analyzer.py file. Just search for



SeoPanel or Collabtive, depending on the application
that you are testing, and uncomment the corresponding
block of code. This will make the processing time of
FIXX even faster due to optimal cypher queries that
have been written for these applications.
Results: The sPaths and dPaths per seed can be verified
from the terminal and correspond to column 5 of Table
2 in the paper. The path_results.txt file inside the results
folder can be viewed to verify the sPaths and dPaths that
have been detected by FIXX. This file contains each of
the complete paths along with the total number of sPaths
and dPaths which correspond to column 5 and column
6 in Table 3 of our paper.

(E4): [Exploitable Paths] [10 human hours]: Note that this
experiment is based on the results obtained from the
previous experiment. E3 returns a list of the sPaths and
dPaths. It also prints the total number of exploitable
paths in the same text file. However, as mentioned in
the paper, in addition to the paths detected by FIXX,
we verify the exploitable paths manually. So, we check
each of the paths returned by FIXX in E3 and verify the
total number of exploitable paths, which correspond to
Column 7 of Table 3 in our paper. An example of this is
shown in the Example README file.

(E5): [Re-Discover CVE] [20 compute-hour + 10-12 human-
hours]: For this experiment, we have listed the running
time for all the applications combined. This experiment
will aim to obtain the original exploitable path reported
in the CVE using the newfound sPaths and dPaths. Note
that this experiment can take a lot of time as it repeats
the entire analysis of FIXX, and we only report the result
as a Yes or No in column 8 of Table 3 in the paper, which
verifies if the original path was found or not. We have
provided a thorough example in our Example.md file
How to: To run this experiment, you will need
the command python fixx_main.py -n <applica-
tion_name> –detectsimilarpaths -vulnerablefile <vul-
nerable_file_name> -seeds 4 -modulo 2 -threshold 50.
Please note that the value of the threshold will need to
be altered accordingly since certain paths cannot be re-
discovered with the same threshold due to limitations in
terms of ancestor/descendant nodes or data flow paths,
as discussed in our paper.
Preparation: To evaluate this claim, you will need to
select any one of the obtained sPaths and dPaths and
obtain the exploit string as well as the request_data.json
file.
Execution: Before running the command provided in
the How to, you will need to obtain the execution trace
of the file in which the selected sPath or dPath is present.
Once the trace has been obtained, you can run the above
command to repeat the analysis of FIXX. The path re-
sults will be stored in the same folder and can be verified
to check if the original vulnerable path is present or not.

Results: The path_results.txt file inside the results
folder can be viewed to verify the new sPaths and dPaths
that have been detected by FIXX. You can manually ver-
ify that the original exploitable path is present among
these paths and confirm with the results shown in column
8 of Table 3.

A.5 Notes on Reusability
Our artifact can be used to detect all exploitable paths in any
PHP web application similar to a previously known vulnera-
ble path present in that application. You can modify the values
of the seeds, modulo as well as the threshold parameter to dis-
cover different types of exploitable paths. Please refer to our
paper to avoid resulting in false positive cases by increasing
the value of the seeds and similarity modulo or decreasing the
value of the similarity threshold parameters, respectively. Sig-
nificantly increasing the seed value or modulo value can lead
to FIXX selecting instructions that are not quite sensitive or
differ quite a bit in terms of the identifiers involved. Similarly,
decreasing the threshold significantly can lead to FIXX select-
ing paths that are not similar to the original path. Although
FIXX has been evaluated on vulnerabilities like Cross-Site
Scripting and SQL Injection, the artifact can discover paths
associated with other vulnerability types like Command Injec-
tion, etc., as long as the right request is sent when obtaining
the execution trace, as this is the basis for discovering similar
instructions that lead to similar paths.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


