
USENIX Security ’25 Artifact Appendix:
WHEN GOOD KERNEL DEFENSES GO BAD: Reliable and Stable Kernel

Exploits via Defense-Amplified TLB Side-Channel Leaks

Lukas Maar
Graz University of Technology

Lukas Giner
Graz University of Technology

Daniel Gruss
Graz University of Technology

Stefan Mangard
Graz University of Technology

A Artifact Appendix

A.1 Abstract
This paper shows how side-channel leakage in kernel defenses
can be exploited to leak the locations of security-critical ker-
nel objects, enabling reliable and stable attacks on the Linux
kernel. By systematically analyzing 127 defenses, we show
that enabling any of three specific defenses – strict memory
permissions, kernel heap virtualization, or stack virtualization
– exposes fine-grained TLB contention patterns. These pat-
terns are then combined with kernel allocator massaging to
perform location disclosure attacks, revealing the locations of
kernel heap objects, page tables, and stacks.

The artifacts demonstrate the timing side-channel attack
and the exploit techniques. For both, we provide a kernel
module and programs to perform the experiments.

1. For the timing side channel, we leak the location of
kernel heap objects (i.e., pipe_buffer, msg_msg, cred,
file, and seq_file), page tables (all levels), and the
kernel stack. While our side channel works on all Intel
generations between the 8th and 14th, we recommend
evaluating on Intel 13th generation, as we have mainly
evaluated on this one. While our side channel works on
Linux kernels between v5.15 and v6.8, we recommend
evaluating on the Ubuntu generic kernel v6.8.

2. For the exploit techniques, we perform privilege escala-
tion using the 3 techniques. Inherent to kernel exploita-
tion, we tailor these techniques to the specific Ubuntu
generic kernel v6.8.0-38, the required version to evaluate
these techniques.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

For evaluating the timing side channel, the experiments can
be used in kernel exploitation of memory-corruption attacks,
as they allow the location of kernel objects be leaked on Intel
CPUs. This raises potential ethical concerns.

For evaluating the exploit techniques, the artifacts might
result in destructive steps. While we introduce an exploit
primitive via a kernel module and do not provide methods to
compromise systems in the wild, the experiment using this
primitive may cause system crashes. However, during our
evaluation, we have not encountered a single system crash.

A.2.2 How to Access

We provide the source code (github and zenodo) for perform-
ing the timing side channel.

A.2.3 Hardware Dependencies

A Linux system running on an Intel CPU between 8th and
14th generation. However, we recommend running the evalua-
tion on a 13th generation Intel, as this is what we have mainly
evaluated on. We have observed a trend that newer Intel CPUs
and better cooling tend to give more stable results.

A.2.4 Software Dependencies

While our disclosure attacks should generically work on Linux
kernels, our experiments are tailored to Ubuntu Linux kernels
between v5.15 to v6.8. As reference, we have mainly evalu-
ated on the generic Ubuntu kernel v6.8.0-38 (and the kernel
with CONFIG_SLAB_VIRTUAL of v6.61).

One part of the artifact evaluation is to insert a kernel mod-
ule that requires root privileges. This module is required to
obtain the ground truth of the kernel object’s location as well
as for providing the exploit primitive for the exploit tech-
niques. We tested our kernel module on Ubuntu Linux down-
stream kernels v5.15, v6.5, and v6.8 and kernel v6.6. For
other kernels that have different config files (or other down-
stream changes) our implemented module may not do what
we intended. Specifically, in order to obtain the location of
kernel objects, we redefined and reimplemented structures

1https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=
Khm962JEfh0F+CVbQ@mail.gmail.com/T/

https://github.com/isec-tugraz/TLBSideChannel/tree/artifact-evaluation
https://zenodo.org/records/14736361
https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=Khm962JEfh0F+CVbQ@mail.gmail.com/T/
https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=Khm962JEfh0F+CVbQ@mail.gmail.com/T/


and functions. We did this because some functions used to
access kernel data structures are implemented as inline func-
tions, e.g., ipc_obtain_object_check, which prevented us
from calling these functions directly. Another reason is that
some structs, e.g., msg_queue, are defined in c files, which
also prevents us from using these struct definitions.

While this artifact evaluation include experiments exploit-
ing leakage for all defenses, we only recommend to reproduce
experiments exploiting leakage from D1 and D3. This is be-
cause reproducing leakage from D2 requires a Linux kernel
compiled with CONFIG_SLAB_VIRTUAL, i.e., the intended v6.6
used by Google’s KernelCTF. We encountered driver crashes
during boot due to incompatibilities, requiring additional en-
gineering effort. However, all of our heap location leakage
attacks should work directly by exploiting D2 when swapping
the base address from the DPM to the virtual heap.

Due to the nature of kernel exploitation in general, our ex-
ploit techniques depend on the kernel version. Therefore, we
only provide the end-to-end attack for the exact Ubuntu Linux
kernel v6.8.0-38 (and the kernel with CONFIG_SLAB_VIRTUAL
of v6.6). The exact version is needed, e.g., for the control-flow
hijacking attack, as the ROP chain varies between versions.
Similarly, the other two exploit techniques require internal
version-dependent kernel information. Curically, all informa-
tion can be obtained as an unprivileged user but requires
engineering effort.

A.3 Set-Up
A.3.1 Installation

The installation works as following:
1. Clone our github repository (github) to /repo/path di-

rectory.
2. Change directory to /repo/path.
3. Select in ./lkm.c either V5_15, V6_5, V6_6, or V6_8,

depending on your running Ubuntu Linux kernel version.
4. Execute make init to build the kernel module and all

experiments and insert the kernel module.

A.3.2 Basic Test

Before starting the experiments, determine the TLB hit thresh-
olds on your CPU as follows. It is important to ensure that
the background noise is as low as possible before starting this
basic experiment, as described in A.5.

1. Change directory to /repo/path/generic.
2. Execute ./threshold_detection.elf prints

[+] detected thresholds: <THRESHOLD>
<THRESHOLD2>, where THRESHOLD is the thresh-
old for capturing 97 % of all hit timings of mapped
addresses and THRESHOLD2 is the threshold for the
minimum timing of unmapped addresses.

3. Repeat this a few times and write the most con-
sistent result to THRESHOLD and THRESHOLD2 in

/repo/path/include/tlb_flush.h and recompile
with make build in /repo/path.

A.4 Evaluation Workflow

A.4.1 Major Claims

We provide artifacts verifying the following claims:
(C1): We demonstrate to leak the base address of the DPM,

i.e., page_offset_base. This is proven by (E1) de-
scribed in Section 6.2 Leaking Coarse-Grained Kernel
Section.

(C2): We demonstrate to leak the base address of the memory
location used by vmalloc. This is proven by (E2) de-
scribed in Section 6.2 Leaking Coarse-Grained Kernel
Section.

(C3): We demonstrate to leak the base address of the virtual
memory mapping vmemmap. This is proven by (E3) de-
scribed in Section 6.2 Leaking Coarse-Grained Kernel
Section.

(C4): We demonstrate that exploiting D1 allows to leak the
page-aligned location of msg_msg. This is proven by
(E4) described in Section 5.1 and Section 6.2 Leaking
Fine-Grained Locations and shown in Table 1.

(C5): We demonstrate that exploiting D1 allows to leak the
page-aligned location of file. This is proven by (E5)
described in Section 5.1 and Section 6.2 Leaking Fine-
Grained Locations and shown in Table 1.

(C6): We demonstrate that exploiting D1 allows to leak the
page-aligned location of seq_file. This is proven by
(E6) described in Section 5.1 and Section 6.2 Leaking
Fine-Grained Locations and shown in Table 1.

(C7): We demonstrate that exploiting D1 allows to leak the
page-aligned location of pipe_buffer. This is proven
by (E7) described in Section 5.1 and Section 6.2 Leak-
ing Fine-Grained Locations and shown in Table 1.

(C8): We demonstrate that exploiting D1 allows to leak the
locations of page-tables, i.e., Page Table (PT), Page Mid-
dle Directory (PMD), and Page Upper Directory (PUD).
This is proven by (E8) described in Appendix B and Sec-
tion 6.2 Leaking Fine-Grained Locations and shown
in Table 1.

(C9): We demonstrate that exploiting D3 allows to leak the
location of the kernel stack. This is proven by (E9) de-
scribed in Section 5.3 and Section 6.2 Leaking Fine-
Grained Locations and shown in Table 1.

(C10): We demonstrate high reliability of our location disclo-
sure attacks. This is proven by (E10) shown in Table 1.

(C11): We demonstrate the Unlink Primitive exploit tech-
nique. This is proven by (E11) described in Section 7.1.

(C12): We demonstrate the Use-After-Free & Out-Of-
Bounds Write exploit technique. This is proven by
(E12) described in Section 7.1.

(C13): We demonstrate the Constrained Write Primitive

https://github.com/isec-tugraz/TLBSideChannel/tree/artifact-evaluation


exploit technique. This is proven by (E13) described in
Section 7.1.

(C14): We demonstrate high reliability of our exploit tech-
niques. This is proven by (E14).

A.4.2 Experiments

Before running the experiments, please perform the set-up in
A.3 and read the note in A.5.
(E1): Basic DPM location leakage [10 human-seconds + 1

computer-second]:
How to: Execute ./generic/dpm_leak.elf.
Results: This experiment outputs the base address of
the DPM.

(E2): Basic vmalloc memory location leakage [10 human-
seconds + 1 computer-second]:
How to: Execute ./generic/vmalloc_leak.elf.
Results: This experiment outputs the base address of
the virtual memory section used for vmalloc.

(E3): Basic vmemmap memory location leakage [10 human-
seconds + 1 computer-second]:
How to: Execute ./generic/vmemmap_leak.elf.
Results: This experiment outputs the base address of
the virtual memory mapping vmemmap.

(E4): msg_msg location leakage [10 human-seconds + 10
computer-seconds]:
How to: Execute ./heap/msg_msg_leak.elf.
Results: This experiment outputs the page-aligned
msg_msg object location.

(E5): file location leakage [10 human-seconds + 10
computer-seconds]:
How to: Execute ./heap/file_leak.elf.
Results: This experiment outputs the page-aligned
file object location.

(E6): seq_file location leakage [10 human-seconds + 10
computer-seconds]:
How to: Execute ./heap/seq_file_leak.elf.
Results: This experiment outputs the page-aligned
seq_file object location.

(E7): pipe_buffer location leakage [10 human-seconds +
10 computer-seconds]:
How to: Execute ./heap/pipe_buffer_leak.elf.
Results: This experiment outputs the page-aligned
pipe_buffer object location.

(E8): Page-table location leakage [10 human-seconds + 20
computer-seconds]:
How to: Execute ./page-table/pt_leak.elf,
./page-table/pmd_leak.elf, or
./page-table/pud_leak.elf.
Results: This experiment outputs the respective loca-
tion of PT, PMD, and PUD.

(E9): Kernel stack location leakage [10 human-seconds + 2
computer-seconds]:
How to: Execute ./stack/stack_leak.elf.

Results: This experiment outputs the current kernel
stack location.

(E10): Reliable location disclosure attacks [5 human-minute
+ 2 computer-hours]:
How to: Execute ./eval.sh (in heap, page-table
and stack) and then ./print.py.
Description: The ./eval.sh scripts performs between
20 to 100 execution of (E4-9) depending on the exper-
iment, while ./print.py prints a table which should
closely resemble Table 1. As described in A.5, back-
ground activity should be minimized in this evaluation.
Results: This experiment outputs the content of Table 1
for D1 and D3.

(E11): Unlink primitive [10 human-seconds + 1 computer-
seconds]:
How to: Execute ./attacks/pipe_unlink.elf.
Limitation: Works with Ubuntu kernel v6.8.0-38.
Other versions will most likely lead to a program crash.
Results: Privilege escalation.

(E12): Use-After-Free & Out-Of-Bounds write [10 human-
seconds + 1 computer-seconds]:
How to: Execute ./attacks/dirty_page.elf or
./attacks/advanced_slubstick.elf.
Limitation: Works with Ubuntu kernel v6.8.0-38 or the
v6.6 intended to be used with CONFIG_SLAB_VIRTUAL.
Other versions will most likely lead to a program crash.
Results: Privilege escalation.

(E13): Constrained write [10 human-seconds + 3 computer-
seconds]:
How to: Execute ./attacks/stack_attack.elf.
Limitation: Works with Ubuntu kernel v6.8.0-38.
Other versions will most likely lead to a program crash.
Results: Privilege escalation.

(E14): Reliable exploit techniques [5 human-minutes + 10
computer-minutes]:
How to: Execute ./eval.sh and then ./print.py,
both in attacks.
Results: This experiment shows the success rate of the
3 exploit techniques.

A.5 Notes on Reusability
As described in Section 6.2 Stress, the most dominant noise
source is CPU frequency fluctuation. Hence, perform all ex-
periments with as little background activity as possible to
reproduce the paper’s results. We even suggest to perform the
experiments on an idle system with no other activity.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies

	Set-Up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


