
USENIX Security ’25 Artifact Appendix: Robust, Efficient, and Widely
Available Greybox Fuzzing for COTS Binaries with System Call Pattern

Feedback

Jifan Xiao1, Peng Jiang2, Zixi Zhao1, Ruizhe Huang1, Junlin Liu1, and Ding Li1

1 Key Laboratory of High Confidence Software Technologies, Peking University
2 Southeast University

A Artifact Appendix

A.1 Abstract

This document provides instructions to execute the artifacts.
This is a prelinimary version of SPFuzz and SPFuzz++. The
artifacts are provided as a Virtual Machine (VM) image. The
VM is configured with all the dependencies and the source
codes of SPFuzz and SPFuzz++, with necessary data for
benchmarks. Please exactly follow the instructions in this
document to execute SPFuzz and SPFuzz++.

A.2 Description & Requirements

To use the artifacts, you first need to create a VM with the
provided harddisk image. The image is in vdi format and can
be loaded using Oracle VirtualBox. The VM is configured
with 2 cores and 4GB of RAM. The VM is running Ubuntu
18.04 LTS. (Since the current version of NoDrop module
does not support docker environments, we choose to share
our artifacts in this way.)

A.2.1 Security, privacy, and ethical concerns

We have reported all the vulnerabilities discovered by SPFuzz
to the authors/owners of the vulnerable software.

A.2.2 How to access

We publish the artifacts through the following link:
https://doi.org/10.5281/zenodo.15209966.

Once you have configured and created the VM successfully,
you can login to the VM using the following credentials:

Username: usenix
Password: security

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

For this version, the software environment should be identi-
cal with the provided VM image, especially the OS kernel
version.

A.2.5 Benchmarks

Benchmarks are contained in the VM image disk.

A.3 Set-up
A.3.1 Installation

• Step 1: Configure Core Pattern For Fuzzers

sudo −s
echo c o r e >/ p roc / s y s / k e r n e l / c o r e _ p a t t e r n
su u s e n i x

• Step 2: Load NoDrop Kernel Module

cd ~ / SPFuzz / NoDrop / b u i l d
bash remake . sh
make
make l o a d

• Step 3: Make SPFuzz & SPFuzz++

Take SPFuzz++ as an example (SPFuzz is similar) :

cd ~ / SPFuzz / SPFuzz++
make c l e a n
make

Then, an executable named afl-fuzz will be generated in
the current directory.

• Step 4: Prepare Benchmarks

All benchmarks are held in the ~/SPFuzz/benchmarks
directory. Each benchmark is a directory with a binary
file, an input.zip file containing the inputs, and another

https://doi.org/10.5281/zenodo.15209966


.zip file containing the source codes if this benchmark is
open-source.

To prepare the benchmark, you need to unzip the seeds
from the inputs.zip file, and copy the binary to a new
binary named toTest in the same directory. For example,
to prepare the perlbench_r benchmark:

cd ~ / SPFuzz / benchmarks / p e r l b e n c h _ r
u n z i p i n p u t s . z i p
cp p e r l b e n c h _ r t o T e s t

A.3.2 Basic Test

Take SPFuzz++ as an example (SPFuzz is similar). First,
make sure the “NoDrop“ kernel module is loaded. Then, exe-
cute the following command:

cd ~ / SPFuzz / SPFuzz++
AFL_SKIP_BIN_CHECK=1 . / a f l − f u z z \
− t 1000 −m none \
− i ~ / SPFuzz / benchmarks /NAME/ i n p u t s \
−o ~ / SPFuzz / benchmarks /NAME/ o u t p u t \
−− ~ / SPFuzz / benchmarks /NAME/ t o T e s t @@

Note to replace the NAME with the benchmark you want
to test. An example using perlbench_r is stored in the
~/example.sh file.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SPFuzz and SPFuzz++ are able to fuzz all the bench-
mark binaries without source codes, and the efficiency
is comparable with traditional methods.

A.4.2 Experiments

(E1): [Optional Name] [1 human-hour + 24 X 29 compute-
hour + 3GB X 29 disk]:
How to: First, prepare the tools and benchmarks accord-
ing to Section A.3, then start the fuzzing campaign and
wait for 24 hours. This procedure applies to all the 29
benchmarks, both open-source and close-source.
Results: Follow the instructions in step-6 of the
README.md file contained in the repo to calculate cov-
erage. SPFuzz and SPFuzz++ should be able to run all
the fuzzing tasks. SPFuzz++ should obtain comparable
speeds and coverage data with traditional fuzzers.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


