
USENIX Security ’25 Artifact Appendix: Further Study on Frequency
Estimation under Local Differential Privacy

Huiyu Fang
Southeast University

Liquan Chen
Southeast University

Suhui Liu
Southeast University

A Artifact Appendix

A.1 Abstract
The artifact consists of Python-based code and scripts de-
signed to evaluate LDP frequency protocols using synthetic
and real-world datasets. The artifact comprises three main
components: (1) the source code of all LDP frequency pro-
tocols evaluated in the paper, including the baseline and pro-
posed protocols, (2) the scripts to conduct the experiments
and plot the results, and (3) a comprehensive README file.
With all these components, the results of our paper can be
reproduced.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is publicly available on Zenodo at https://
zenodo.org/records/14715748. Please use the latest ver-
sion of this record.

A.2.3 Hardware dependencies

The artifact is compatible with any commodity computer
with a minimum of 16GB of RAM and requires approx-
imately 300MB of disk space. The memory requirement
mainly comes from the runtime experiment and more RAM is
required if the customized domain size in the runtime experi-
ment is larger than 4096. Multi-core CPUs can significantly
speed up the experiments. We run the experiments on a PC
with AMD Ryzen 9 7950X and 64GB memory.

A.2.4 Software dependencies

The artifact is developed in Python 3.10.4 and should be com-
patible with recent Python versions. We run the experiments
on Windows, but Python is a cross-platform language, which
means it can run on any OS with Python installed, including
Windows, macOS, and Linux. The artifact requires only four

Python packages, including NumPy, xxHash, PyArrow, and
Matplotlib. All these packages can be installed from PyPI
using pip. The requirements.txt file is provided for convenient
installation.

A.2.5 Benchmarks

The real-world data set is from the NYC Taxi and Limousine
Commission and is integrated into the artifact.

A.3 Set-up
A.3.1 Installation

Before installation, a recent Python environment should be
created. We recommend Python 3.10.4. After downloading
and unzipping the artifact, enter the artifact folder and run the
following command in the terminal:

pip install -r requirements.txt

The command will install all dependencies required by the
artifact.

A.3.2 Basic Test

Once the installation is completed, users can run the following
command in the terminal to verify that all required software
components are functioning properly:

python test.py

The script will run all unit tests and print a success message
in the terminal after passing each unit test.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The empirical MSE matches our analytical MSE of all
frequency protocols in the paper. This is proven by the
experiment (E1) described in Section 5.2 whose results
are illustrated in Figure 4.

https://zenodo.org/records/14715748
https://zenodo.org/records/14715748


(C2): RUE and RLH achieve better MSE or accuracy than
OUE and OLH, especially for the small domain and
top frequent values. RWS achieves the same optimal
accuracy as SS but with less communication costs for
large domains. This is proven by the experiments (E1)
described in Section 5.3 whose results are illustrated in
Figures 5 and 6.

(C3): The aggregation time of RLH and RWS are much
smaller than that of OLH for large domains. This is
proven by the experiments (E2) described in Section 5.4
whose results are illustrated in Figure 7.

A.4.2 Experiments

We give complete instructions for users to run all experiments
and plot all experimental results in the paper in the README
file. More details, especially the experimental parameters, can
be found in the README file.
(E1): main.py [approximately 105 compute-hour + 250MB

disk]: This experiment is to achieve the empirical MSE
of all frequency protocols on both synthetic and real-
world datasets with a specified range of ε and domain
size.
Preparation: We default to running the experiment 100
times to take the average MSE but very time-consuming.
For quick verification, users can customize the parameter
run_repeat_time in the main.py and drawTopk.py files
to a small number (e.g. 10), but the results for small do-
mains would fluctuate more. The ranges of run_d_range
and run_epsilon_range can also be reduced.
Execution: Enter the artifact folder and run the follow-
ing command in the terminal:

python main.py
Experimental results will be saved in the results folder.
More specifically, each estimated frequency result will
be saved in the results/protocol_name folder and the
summary of average empirical MSE results will be saved
in CSV files.
Results: After the main experiment, plot Figures 4, 5,
and 6 in the paper by running:

python drawAnaEmpMSE.py
python drawEmpMSE.py
python drawTopk.py

The plotted figures will be saved in the draw folder.
(E2): runtime.py [approximately 6 compute-hour + 5.5GB

RAM]: This experiment is to demonstrate the aggrega-
tion time of all frequency protocols in the paper.
Preparation: Runtime and memory costs are linearly
related to data size, so the taxi dataset requires approxi-
mately 36 times as much runtime and RAM as the syn-
thetic dataset. For quick verification or if memory is
limited, users can run the experiment only on the syn-
thetic dataset by commenting out lines from 156 to 158
of the runtime.py code and lines from 66 to 79 of the

drawRuntime.py code.
Execution: Enter the artifact folder and run the follow-
ing command in the terminal:
python runtime.py

The summary of runtime results will be saved in CSV
files in the results folder.
Results: After the runtime experiment, plot Figures 7
in the paper by running:
python drawRuntime.py

The plotted figure will be saved in the draw folder. Ad-
ditionally, Figure 5, 6, and 7 share the same legend,
which is generated by drawEmpMSE.py and saved as
legend.eps in the draw folder.

A.5 Notes on Reusability
The source code of frequency protocols is modularized for
reusability. The Python-based scripts of experiments can be
used as examples for users to conduct experiments on differ-
ent datasets. However, to be more practical, the source code
may need to be divided into client-side and server-side. More
specifically, the perturb function should be implemented on
the client side, while the aggregate function should be imple-
mented on the server side.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


