
USENIX Security ’25 Artifact Appendix: Generated Data with Fake

Privacy: Hidden Dangers of Fine-tuning Large Language Models on

Generated Data

Atilla Akkus,1* Masoud Poorghaffar Aghdam, 1* Mingjie Li,2* Junjie Chu,2

Michael Backes,2 Yang Zhang,2 Sinem Sav1

1Bilkent University
2CISPA Helmholtz Center for Information Security

April 15, 2025

A Artifact Appendix

This artifact appendix provides a comprehensive guide to

evaluating the functionality of our artifact that includes code,

datasets, and evaluation scripts.

A.1 Abstract

This artifact enables the assessment of privacy risks when

fine-tuning large language models (LLMs) with generated

data. It includes the evaluation of Personal Information Identi-

fier (PII) leakage and Membership Inference Attacks (MIAs),

across two fine-tuning strategies: supervised fine-tuning (SFT)

with unstructured generated data and self-instruct tuning. The

artifact enables researchers to analyse the extent to which

generated data may still pose privacy risks. The complete

repository and setup instructions are included in this docu-

ment.

A.2 Description & Requirements

The software environment is defined by the dependencies

listed in the requirements.txt file, which includes all nec-

essary Python packages. A pre-configured Docker image,

pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime, is recom-

mended to ensure compatibility and reproducibility. After

setting up the environment, the dependencies can be installed

by running: pip install -r requirements.txt

A.2.1 Security, privacy, and ethical concerns

We used publicly available data without human participants.

Our study examines privacy risks, such as PII extraction and

MIA, in fine-tuning LLMs. Findings were responsibly dis-

closed, and fine-tuned checkpoints were not released due to

privacy concerns.

*These authors contributed equally to this work.

A.2.2 How to access

The artifact is available at: https://doi.org/10.5281/

zenodo.14732690.

A.2.3 Hardware dependencies

The experiments were conducted on hardware with a CUDA-

compatible NVIDIA GPU (≥ 40GB VRAM recommended

for training), an x86_64 architecture CPU, at least 32GB of

RAM, and 100GB of disk space for storing datasets and inter-

mediate outputs.

A.2.4 Software dependencies

The environment requires Python 3.10+ and pack-

ages from ’requirements.txt’. It is suggested to use

‘pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime‘ docker

image.

A.2.5 Benchmarks

We use the Enron subset of the Pile dataset in our paper. The

processed version, as used in our study, is included in the

repository under the ’data’ directory.

A.3 Set-up

A.3.1 Installation

Clone the Repository: Begin by cloning the Git repository

to your local machine:
git clone [repository URL]

cd [repository directory]

Pull the Docker Image:
docker pull pytorch/pytorch:2.5.1-

cuda12.4-cudnn9-runtime

https://doi.org/10.5281/zenodo.14732690
https://doi.org/10.5281/zenodo.14732690


Run the Docker Container: Start the Docker container with

GPU support and mount the repository:

docker run -it --gpus all -v

\$(pwd):/workspace

pytorch/pytorch:2.5.1-cuda12.4

-cudnn9-runtime

Install Dependencies: Install the required Python packages

using the provided requirements.txt file:

pip install -r requirements.txt

A.3.2 Basic Test

Fine-Tuning Models with PEFT

Fine-tune models using the run_peft.py script. Example
command:
torchrun -nproc_per_node=4 run_peft.py -model

EleutherAI/pythia-1.4b

Merging Adapters with PEFT

After fine-tuning, use the merge_peft.py script to merge the

adapter results with the base model:

python merge_peft.py -model ./_fine_tuned_model

-save_dir ./merged_model_output

To check the functionality of this script, please refer to the

checkpoint provided in https://drive.google.com/file/d/

1H8_0p5bW8Ur5ZXZHrvOHYsITTzD52Fys/view.

Measuring PII Attack Success

Evaluate PII attack success using the measure_purified.py script.

Example command:

python measure_purified.py -model

EleutherAI/pythia-1.4b -output_dir ./results

Evaluating Models with Purified Workflow

Automate merging and PII attack evaluation using the

evaluate_purified.py script. Example command:

python evaluate_purified.py -model ./pythia-1.4b

-temp ./tempMerged

Measuring Model Perplexity

Calculate model perplexity using the perplexity/perplexity.py

script. Example command:

python perplexity/perplexity.py -dir ./pythia-1.4b

Generating Continuation Data

Generate continuation data using the

data/continuation/generate.py script. Example com-

mand:

python data/continuation/generate.py -model

EleutherAI/pythia-1.4b

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our system includes code for generating synthetic datasets

tailored for fine-tuning LLMs.

(C2): Our system offers the essential code for fine-tuning models

using various Parameter-Efficient Fine-Tuning (PEFT) tech-

niques.

(C3): Our system provides the essential code for evaluating models

with a streamlined workflow.

(C3): Our system provides the essential code for evaluating models

with purified workflow.

(C4): Our system provides the essential code for measuring the

success of PII attacks.

(C5): Our system provides the essential code for measuring the

success of MIA attacks.

A.4.2 Experiments

Each experiment listed below directly corresponds to a major claim

in Section A.4.1 in sequential order. In addition, several optional

parameters are available for each experiment, which are detailed in

our GitHub repository.

(E1): Generating Dataset [1 compute-hour + 1GB disk]: It gener-

ates a synthetic dataset as articulated in Section 3.1.1.

How to: Use the script data/continuation/generate.py to gen-

erate the needed dataset using a specified model and dataset.

Execution: To run the script, the –data_set parameter must

be specified, as it defines the path to the chosen dataset. By

default this parameters uses "data/enron.jsonl".

Results: Upon running the script, a new directory will be cre-

ated in the used working directory with a name similar to the

specified model. If the script executes and completes success-

fully, an Arrow file will be generated within this directory. This

file contains the generated data points.

(E2): Fine-Tuning Models with PEFT [4 compute-hours + 10GB

disk]: This step fine-tunes models using PEFT.

How to: Use the script run_peft.py to fine-tune models with

PEFT.

Execution: To run the script, the –model parameter must be

specified, as it determines the model to be instruction-tuned.

By default, this parameter uses "EleutherAI/pythia-1.4b". Ad-

ditional key parameters include:

• –input: Path to the training dataset (Default:

"data/enron.jsonl").

• –peft_type: PEFT type (Options: lora, dora, pissa; De-

fault: "lora").

Results: Once the script completes, the adapter of fine-tuned

model will be stored in the output directory. This adapter needs

to be merged with the original model prior to evaluation.

(E3): Evaluating Models with Purified Workflow [3 compute-hours

+ 5GB disk]: This step evaluates models by sequentially run-

ning merge_peft.py and measure_purified.py.

How to: Use the script evaluate_purified.py to automate the

merging and evaluation of all models in a specified directory.

Execution: To run the script, the –model parameter must be

specified, as it defines the path to the model being evaluated.

By default, this parameter uses "./pythia-1.4b".

https://drive.google.com/file/d/1H8_0p5bW8Ur5ZXZHrvOHYsITTzD52Fys/view
https://drive.google.com/file/d/1H8_0p5bW8Ur5ZXZHrvOHYsITTzD52Fys/view


Results: Upon successful execution, a results_purified.jsonl

file will be generated in each model’s directory. This file con-

tains key evaluation metrics, including matches, model name,

temperature, and top-k values.

(E4): Measuring PII Attack Success [1 compute-hour + 2GB disk]:

This step evaluates the success rate of Personally Identifiable

Information (PII) attacks.

How to: Use the script measure_purified.py to assess the num-

ber of successful PII attacks.

Execution: To run the script, the model and output_dir pa-

rameters must be specified, as they define the model being

evaluated and the directory where results will be saved.

Results: Upon successful execution, a results_purified.jsonl

file will be generated in each model’s directory. This file con-

tains key evaluation metrics, including matches, model name,

temperature, and top-k values.

(E5): Conducting MIA: This step conducts MIA in the target mod-

els.

How to: Download mimir repository. Then run

run.py --config configs/your_config.json with

your customized configuration file. You can refer to the

original repository for reference on configuration details.

Results: Upon successful execution, an output directory will

be created, and the summary results will be printed on the

console. The directory will contain example plots and data

produced during MIA.

A.5 Notes on Reusability

This artifact is adaptable for studying privacy risks in fine-tuning

LLMs across different models and datasets. It supports modifications

to fine-tuning parameters, attack methods, and evaluation metrics, en-

abling broader analysis. The modular design allows integration with

various models, including instruction tuning and domain-specific

adaptations. A pre-configured Docker setup ensures stability and

easy extension for future research on privacy-preserving LLM train-

ing.

A.6 Version

Based on the LaTeX template for Artifact Evaluation V20231005.

Submission, reviewing and badging methodology followed for the

evaluation of this artifact can be found at https://secartifacts.

github.io/usenixsec2025/.

https://github.com/iamgroot42/mimir
https://secartifacts.github.io/usenixsec2025/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


