

# USENIX Security '25 Artifact Appendix: Generated Data with Fake Privacy: Hidden Dangers of Fine-tuning Large Language Models on Generated Data

Atilla Akkus,<sup>1\*</sup> Masoud Poorghaffar Aghdam, <sup>1\*</sup> Mingjie Li,<sup>2\*</sup> Junjie Chu,<sup>2</sup> Michael Backes,<sup>2</sup> Yang Zhang,<sup>2</sup> Sinem Sav<sup>1</sup>

> <sup>1</sup>Bilkent University <sup>2</sup>CISPA Helmholtz Center for Information Security

> > April 15, 2025

# A Artifact Appendix

This artifact appendix provides a comprehensive guide to evaluating the *functionality* of our artifact that includes code, datasets, and evaluation scripts.

# A.1 Abstract

This artifact enables the assessment of privacy risks when fine-tuning large language models (LLMs) with generated data. It includes the evaluation of Personal Information Identifier (PII) leakage and Membership Inference Attacks (MIAs), across two fine-tuning strategies: supervised fine-tuning (SFT) with unstructured generated data and self-instruct tuning. The artifact enables researchers to analyse the extent to which generated data may still pose privacy risks. The complete repository and setup instructions are included in this document.

# A.2 Description & Requirements

The software environment is defined by the dependencies listed in the requirements.txt file, which includes all necessary Python packages. A pre-configured Docker image, *pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime*, is recommended to ensure compatibility and reproducibility. After setting up the environment, the dependencies can be installed by running: pip install -r requirements.txt

## A.2.1 Security, privacy, and ethical concerns

We used publicly available data without human participants. Our study examines privacy risks, such as PII extraction and MIA, in fine-tuning LLMs. Findings were responsibly disclosed, and fine-tuned checkpoints were not released due to privacy concerns.

## A.2.2 How to access

The artifact is available at: https://doi.org/10.5281/ zenodo.14732690.

### A.2.3 Hardware dependencies

The experiments were conducted on hardware with a CUDAcompatible NVIDIA GPU ( $\geq$  40GB VRAM recommended for training), an x86\_64 architecture CPU, at least 32GB of RAM, and 100GB of disk space for storing datasets and intermediate outputs.

#### A.2.4 Software dependencies

The environment requires Python 3.10+ and packages from 'requirements.txt'. It is suggested to use 'pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime' docker image.

## A.2.5 Benchmarks

We use the Enron subset of the Pile dataset in our paper. The processed version, as used in our study, is included in the repository under the 'data' directory.

# A.3 Set-up

## A.3.1 Installation

**Clone the Repository**: Begin by cloning the Git repository to your local machine:

```
git clone [repository URL]
cd [repository directory]
```

## Pull the Docker Image:

```
docker pull pytorch/pytorch:2.5.1-
    cuda12.4-cudnn9-runtime
```

<sup>\*</sup>These authors contributed equally to this work.

**Run the Docker Container**: Start the Docker container with GPU support and mount the repository:

```
docker run -it --gpus all -v
  \$(pwd):/workspace
pytorch/pytorch:2.5.1-cuda12.4
     -cudnn9-runtime
```

**Install Dependencies**: Install the required Python packages using the provided requirements.txt file:

pip install -r requirements.txt

#### A.3.2 Basic Test

#### **Fine-Tuning Models with PEFT**

Fine-tune models using the run\_peft.py script. Example command:

torchrun -nproc\_per\_node=4 run\_peft.py -model EleutherAI/pythia-1.4b

#### **Merging Adapters with PEFT**

After fine-tuning, use the merge\_peft.py script to merge the adapter results with the base model:

python merge\_peft.py -model ./\_fine\_tuned\_model -save\_dir ./merged\_model\_output

To check the functionality of this script, please refer to the checkpoint provided in https://drive.google.com/file/d/ 1H8\_0p5bW8Ur5ZXZHrvOHYsITTzD52Fys/view.

#### Measuring PII Attack Success

Evaluate PII attack success using the measure\_purified.py script. Example command: python measure\_purified.py -model EleutherAI/pythia-1.4b -output dir ./results

#### **Evaluating Models with Purified Workflow**

Automate merging and PII attack evaluation using the evaluate\_purified.py script. Example command: python evaluate\_purified.py -model ./pythia-1.4b -temp ./tempMerged

#### **Measuring Model Perplexity**

Calculate model perplexity using the perplexity/perplexity.py script. Example command:

python perplexity/perplexity.py -dir ./pythia-1.4b

#### **Generating Continuation Data**

Generate continuation data using the data/continuation/generate.py script. Example command: python data/continuation/generate.py -model EleutherAI/pythia-1.4b

## A.4 Evaluation workflow

#### A.4.1 Major Claims

- (C1): Our system includes code for generating synthetic datasets tailored for fine-tuning LLMs.
- (C2): Our system offers the essential code for fine-tuning models using various Parameter-Efficient Fine-Tuning (PEFT) techniques.
- **(C3):** Our system provides the essential code for evaluating models with a streamlined workflow.
- **(C3):** *Our system provides the essential code for evaluating models with purified workflow.*
- **(C4):** Our system provides the essential code for measuring the success of PII attacks.
- **(C5):** Our system provides the essential code for measuring the success of MIA attacks.

#### A.4.2 Experiments

Each experiment listed below directly corresponds to a major claim in Section A.4.1 in sequential order. In addition, several optional parameters are available for each experiment, which are detailed in our GitHub repository.

(E1): Generating Dataset [1 compute-hour + 1GB disk]: It generates a synthetic dataset as articulated in Section 3.1.1.

**How to:** Use the script *data/continuation/generate.py* to generate the needed dataset using a specified model and dataset.

**Execution:** To run the script, the -data\_set parameter must be specified, as it defines the path to the chosen dataset. By default this parameters uses "data/enron.jsonl".

**Results:** Upon running the script, a new directory will be created in the used working directory with a name similar to the specified model. If the script executes and completes successfully, an Arrow file will be generated within this directory. This file contains the generated data points.

(E2): Fine-Tuning Models with PEFT [4 compute-hours + 10GB disk]: This step fine-tunes models using PEFT.
How to: Use the script run\_peft.py to fine-tune models with PEFT.

**Execution:** To run the script, the –model parameter must be specified, as it determines the model to be instruction-tuned. By default, this parameter uses "EleutherAI/pythia-1.4b". Additional key parameters include:

- -input: Path to the training dataset (Default: "data/enron.jsonl").
- -peft\_type: PEFT type (Options: lora, dora, pissa; Default: "lora").

**Results:** Once the script completes, the adapter of fine-tuned model will be stored in the output directory. This adapter needs to be merged with the original model prior to evaluation.

(E3): Evaluating Models with Purified Workflow [3 compute-hours + 5GB disk]: This step evaluates models by sequentially running merge\_peft.py and measure\_purified.py.

**How to:** Use the script *evaluate\_purified.py* to automate the merging and evaluation of all models in a specified directory. **Execution:** To run the script, the –model parameter must be specified, as it defines the path to the model being evaluated. By default, this parameter uses "./pythia-1.4b".

**Results:** Upon successful execution, a *results\_purified.jsonl* file will be generated in each model's directory. This file contains key evaluation metrics, including matches, model name, temperature, and top-k values.

(E4): *Measuring PII Attack Success [1 compute-hour + 2GB disk]*: This step evaluates the success rate of Personally Identifiable Information (PII) attacks.

**How to:** Use the script *measure\_purified.py* to assess the number of successful PII attacks.

**Execution:** To run the script, the **model** and **output\_dir** parameters must be specified, as they define the model being evaluated and the directory where results will be saved.

**Results:** Upon successful execution, a *results\_purified.jsonl* file will be generated in each model's directory. This file contains key evaluation metrics, including matches, model name, temperature, and top-k values.

(E5): *Conducting MIA*: This step conducts MIA in the target models.

**How to:** Download mimir repository. Then run run.py --config configs/your\_config.json with your customized configuration file. You can refer to the original repository for reference on configuration details.

**Results:** Upon successful execution, an output directory will be created, and the summary results will be printed on the console. The directory will contain example plots and data produced during MIA.

# A.5 Notes on Reusability

This artifact is adaptable for studying privacy risks in fine-tuning LLMs across different models and datasets. It supports modifications to fine-tuning parameters, attack methods, and evaluation metrics, enabling broader analysis. The modular design allows integration with various models, including instruction tuning and domain-specific adaptations. A pre-configured Docker setup ensures stability and easy extension for future research on privacy-preserving LLM training.

# A.6 Version

Based on the LaTeX template for Artifact Evaluation V20231005. Submission, reviewing and badging methodology followed for the evaluation of this artifact can be found at https://secartifacts. github.io/usenixsec2025/.