ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security 25 Artifact Appendix: The Cost of Performance:
Breaking ThreadX with Kernel Object Masquerading Attacks

Xinhui Shaof, Zhen Ling‘L;‘: Yue Zhangi, Huaiyu Yan', Yumeng Wei®, Lan Luol, Zixia Liu,
Junzhou Luo®, Xinwen Fu?
T Southeast University, Email: {xinhuishao, zhenling, huaiyu_yan, yumeng5, jluo} @seu.edu.cn
* Drexel University, Email: zyueinfosec @ gmail.com
1 Anhui University of Technology, Email: {lluo, zxliu} @ahut.edu.cn
§ University of Massachusetts Lowell, Email: xinwen_fu@uml.edu

A Artifact Appendix

A.1 Abstract

In this artifact, we provide a repository of the source code for
our symbolic execution engine and the Proof of Concept (PoC)
experiment, along with the necessary materials to replicate the
experiments described in the paper. To facilitate the evaluation
process, we also offer corresponding Docker images, allowing
users to set up the experiment environment and perform the
related experiments with ease. This document outlines the
steps to reproduce the results presented in Sections §6.2 and
§A.2 of the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

All experiments are conducted within a Docker container,
except for one PoC experiment, which is performed on an
actual board. The reproducer will need to execute several
commands on the host machine during the experiment. These
commands are commonly used and safe, ensuring they will
not harm the system.

A.2.2 How to access

The code and experimental materials are available on Zenodo
(DOI: 10.5281/zenodo.14643155) and GitHub (https://
github.com/x-codingman/KOM-experiments.git). Re-
producers can either build the Docker images themselves,
pull them directly from Docker Hub using the link provided
in our GitHub repository, or download them from the Zenodo
platform.

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

A.2.3 Hardware dependencies

* Processor: We recommend using a machine with two
Intel Xeon E5-2620 v2 CPUs (12 cores, 24 threads) to re-
produce the experiment. However, comparable hardware
may also suffice.

¢ Memory: At least 64GB of RAM.
¢ Storage: At least 256GB.

¢ Board (Optional): NUCLEO-U575ZI-Q is used as one
of the platform in the PoC experiment.

A.2.4 Software dependencies

Most experiments depend on Ubuntu 24.04, git, Qemu,
and Docker. For the PoC involving the actual board,
STM32CubelDE is required to reproduce E3.

A.2.5 Benchmarks

Target system calls. We get the ThreadX source code (ver-
sion 6.2.1) from GitHub. To facilitate the system call compi-
lation, we modify the system call wrappers to generate the
intermediate representation code. These modifications are
referenced in the repository’s modification-ThreadX file. To
evaluate the symbolic execution engine, we provide the inter-
mediate representation (IR) code, which has been compiled
from the source code of ThreadX, in the GitHub repository.

A.3 Set-up
A.3.1 Installation

After cloning or downloading the repository, please
refer to the “Preparation” section of the README
files in the corresponding subdirectories (i.e.,
symbolic-execution-engine and Proof-of-Concept).
All experiments should be conducted within the Docker


10.5281/zenodo.14643155
https://github.com/x-codingman/KOM-experiments.git
https://github.com/x-codingman/KOM-experiments.git

image. If you are unable to build the image, we also provide
a pre-built Docker image available on both Docker Hub and
Zenodo.

A.3.2 Basic Test

If the Docker image is built or downloaded successfully,
you can run . /run_docker. sh in the repository, which will
spawn a shell within the container on success. Note that the
container will continue running after you exit the shell. You
can reattach to the container,or spawn a new shell to create
a new container by running ./run_docker.sh again later.
Please be aware that the . /run_docker.sh command will
delete the existing container and create a new one.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Vulnerable system call Detection. Using the symbolic
execution engine, we can identify the modification fields
and path constraints of the target system calls, enabling
us to further determine the vulnerable system calls. This
is proven by the experiment (E1) whose results are illus-
trated in §6.2 (RQ1, Table 2 and Table 3).

(C2): Efficiency. The symbolic execution engine is efficient.
This is proven by the experiment (E2) whose results are
illustrated in §6.2 (RQ4, Table 2).

(C3): Attack Implications. KOM can be launched on var-
ious platforms. This is proven by the experiment (E3)
whose results are illustrated in §6.2 (RQS5, Table 6).

A.4.2 Experiments

Please refer to the “Replicating Our Experiments” section of
the README file in the repository for detailed steps to repro-
duce our experiments.

We design experiments (E1-E2) for the symbolic execution
engine to confirm C1 and C2. We design PoCs (E3) to confirm
C3.

(E1): [Vulnerable System Call Detection.] [5 human-minutes
+ 10 compute-hours]: The vulnerable system calls
can be evaluated by performing symbolic execution
on the system calls of ThreadX. Please refer to the
“(E1) Vulnerable System Call Detection” section of
the README file in the symbolic-execution-engine
folder of the repository. The results can be found in
M[1,2,3]_vulnerable_system_calls.xlsx. CI is
confirmed if the acquired results are consistent with those
in Table 2 and Table 3.

(E2): [Efficiency.] [2 human-minutes + 1 compute-minute]:
The efficiency of the symbolic execution engine is
evaluated by checking the execution results (e.g., the
consumed time and the number of executed instruc-
tions). This experiment should be conducted after

E1. Please refer to the “(E2) Efficiency” section of
the README file in the symbolic-execution-engine
folder of the repository. The results can be found in
symbolic-execution-run-time-evaluation.xlsx.
C2 is confirmed if the acquired results are comparable
with those in Table 2.

(E3): [Attack Implications] [5 human-minutes + 10 compute-
minutes]: The attack implications are evaluated by
performing the PoC experiments on various plat-
forms. Please refer to the README file in the
Proof-of-Concept folder of the repository. C3 is con-
firmed if these PoC experiments can be successfully
executed.

A.5 Notes on Reusability

The under-constrained symbolic execution engine is designed
to identify vulnerable system calls in ThreadX, specifically
for KOM attacks. Currently, this tool does not support the
latest version of ThreadX or other RTOSs.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


