
USENIX Security ’25 Artifact Appendix:
Atkscopes: Multiresolution Adversarial Perturbation as a Unified Attack

on Perceptual Hashing and Beyond

Yushu Zhang1, Yuanyuan Sun1, Shuren Qi1,*, Zhongyun Hua2, Wenying Wen3, Yuming Fang3

1Nanjing University of Aeronautics and Astronautics
2Harbin Institute of Technology, Shenzhen

3Jiangxi University of Finance and Economics
*Corresponding author: Shuren Qi, Email: shurenqi@nuaa.edu.cn

A Artifact Appendix

A.1 Abstract
For USENIX Security ’25 Artifact Evaluation, we provide the
code, models, datasets, and execution scripts of our paper. In
addition, we provide a detailed description in this document
on how to set up the environment and reproduce the main
statements of our paper.

A.2 Description & Requirements
The attack against PhotoDNA has been tested on a 64-bit Win-
dows machine. This limitation is due to the PhotoDNA binary,
which is architecture-specific. The attacks on phash, PDQ, and
NeuralHash have been tested on Linux. It is important to note
that the attack on NeuralHash requires a CUDA-supported
GPU.

To reproduce our major results, you can run our attack as
described in the README.md.

A.2.1 Security, privacy, and ethical concerns

This artifact is used to perform adversarial attacks on percep-
tual hashing algorithms. Although these attacks are conducted
in a controlled and compliant manner in the paper, evaluators
should avoid applying these attacks to real-world systems
or platforms, especially without authorization, as this may
violate terms of service or cause unintended damage to com-
mercial or personal systems.

A.2.2 How to access

Please download the artifact zip file from Zenodo . After
extracting the file, please open the two subdirectories below
as separate projects in PyCharm, as these projects need to be
built in different environments.

A.2.3 Hardware dependencies

The only dependency is the need for a machine compatible
with the corresponding .dll or .so file. This should work in a
64-bit Windows environment.

A.2.4 Software dependencies

The main dependencies are Docker, TensorFlow, and PyTorch.
Other dependencies are listed in the requirements.txt.

A.2.5 Benchmarks

In the artifact, we provide executable Python files for escap-
ing and triggering regulation attacks on pHash, PDQ, Pho-
toDNA, and NeuralHash. We evaluate our two attack sce-
narios using the ImageNet dataset from the ILSVRC 2012
challenge. For our experiments, we have randomly selected
50 pairs of images from the ImageNet dataset, which are
available in the directories ./imagenet_50_resized/ and
./imagenet_tar_50_resized/. Additionally, we have in-
cluded the necessary models for the experiments in the arti-
fact. The model for computing visual loss can be found in
the ./lpips/ directory. The models for pHash, PDQ, Pho-
toDNA, and NeuralHash used in the attacks are located in the
following files: ./imagehash.py, ./python/pdqhashing,
./PhotoDNAx64.dll, and ./NeuralHash respectively.

A.3 Set-up
A.3.1 Installation

To conduct attacks on shallow hashes (pHash, PDQ, Pho-
toDNA) and deephash (NeuralHash), two different environ-
ments need to be configured. Below, we will first explain how
to configure the environment to run the Python files under
AtkScope_ShallowHash. It is important to note that the Pho-
toDNA model can only run on Windows systems. Therefore,

https://zenodo.org/records/15114114
https://www.image-net.org/challenges/LSVRC/2012/


if you wish to conduct attacks on PhotoDNA, you will need
to set up the environment on a Windows system.

First, you need to download the Anaconda installation pack-
age from the official website. Once the installation is com-
plete, open the terminal and enter the following commands:

$ conda create -n <your_env_name > python=3.6

$ conda activate <your_env_name >

$ pip install -r requirements.txt

For running files under AtkScope_NeuralHash, we recom-
mend configuring the environment on a Linux system. Please
run the following command from the project’s root

$ sudo docker build -t hashing_attacks --build -arg
USER_ID=$(id -u) --build -arg GROUP_ID=$(id -g

) .

$ sudo docker build -t hashing_attacks -f rootless
.Dockerfile .

A.3.2 Basic Test

Run the following command in the project root directory
to test if the shallow hashing environment is working properly.

$ conda activate <your_env_name >

$ python test_attack_rgb_target_PDQ.py --
untargeted -a black -d imagenet -c 10 -o 10000
-m 10000 --reset_adam -n 50 --solver adam -b
1 -p 1 --hash 92 --use_resize --htype "PDQ"

--init_size 32 --init_dct_size 16 --method "
tanh" --modifier_method "multiply" --batch 16
--gpu 1 --lr 1 -s "
RGB_results_imagenet_targetPDQ_lpips_dct8_lr0
.1_c10_dist92" --start_idx=0 --dist_metrics "
pdist" --save_ckpts "
best_modifier_imagenet_target_PDQ"

The expected correct output is shown in Figure 1.

Figure 1: Expected output of testing the shallow hashing
environment.

Run the following command in the project root directory to
test if the deep hashing environment is working properly.
To start the docker container run the following command
from the project’s root:

$ sudo docker run --rm --shm-size 16G --name
my_hashing_attacks --gpus ’"device=0"’ -v $(
pwd):/code -it hashing_attacks bash

To run the triggering regulation attack against NeuralHash,
enter the following command in the project root :

$ python adv1_target_attack.py --source=
imagenet_50_resized --target_hashset=
dataset_hashes/imagenet_tar_50_resized_hashes.
csv --output_folder ’
output_target_imagenet_l2_dist17_each10_lr0 .01
’

The expected correct output is shown in Figure 2.

Figure 2: Expected output of testing the deep hashing envi-
ronment.

A.4 Evaluation workflow

We will include the operational steps and experiments that
must be performed to evaluate if our artifact is functional and
to validate our paper’s key results and claims in this section.

A.4.1 Major Claims

(C1): Atkscopes achieve highly efficient and effective ad-
versarial attacks on four commercial hashing algo-
rithms—pHash, PDQ, PhotoDNA, and NeuralHash, in
both the escaping regulation and triggering regulation
attack scenarios. This is proven by the experiments (E1)
and described in sections 5.3, with results reported in
tables 2 and 3.

A.4.2 Experiments

(E1): [Escaping and Triggering Regulation Attacks] [10
human-minutes + 32 compute-hour + 20GB disk]:
Preparation: Follow the configuration instructions for
the two environments as described in section A.3. For the
PhotoDNA attack experiment, the setup must be done
on a Windows system. All instructions can be found in
the README file, and we recommend copying the com-
mands directly from the README to avoid formatting
errors.

https://www.anaconda.com/


Execution: Open the README file, copy the attack
commands into the terminal in the project root directory
to run the Python scripts.
Results: For the Python files under
AtkScope_ShallowHash, after the program fin-
ishes running, the terminal prints success_rate, which
corresponds to the Success Rate in the table, overall
average l2, which corresponds to the L2 distance in
the table, overall average perceptual distance,
which corresponds to the LPIPS in the table, overall
average iterations, which corresponds to the
Rounds in the table, and overall average hash_ori
and overall average hash_tar, which correspond
to the HashDistance in the table.
For the Python files under AtkScope_NeuralHash, af-
ter the program finishes running, the terminal prints
Success rate, which corresponds to the Success Rate
in the table, Average L2 distance, which corresponds
to the L2 Distance in the table, Average LPIPS
distance, which corresponds to the LPIPS Distance
in the table, Average iterations, which corresponds
to the Rounds in the table, and Average target loss,
which corresponds to the HashDistance in the table.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


