
USENIX Security ’25 Artifact Appendix: Distributional Private
Information Retrieval

Ryan Lehmkuhl
MIT

Alexandra Henzinger
MIT

Henry Corrigan-Gibbs
MIT

A Artifact Appendix

A.1 Abstract

A private-information-retrieval (PIR) scheme lets a client
fetch a record from a remote database without revealing
which record it fetched. Classic PIR schemes treat all database
records the same but, in practice, some database records are
much more popular (i.e., commonly fetched) than others.
We introduce distributional PIR, a new type of PIR that can
run faster than classic PIR—both asymptotically and con-
cretely—when the popularity distribution is heavily skewed.
Distributional PIR provides exactly the same cryptographic
privacy as classic PIR. The speedup comes from a relaxed
form of correctness: distributional PIR guarantees that in-
distribution queries succeed with good probability, while out-
of-distribution queries succeed with lower probability.

We construct a distributional-PIR scheme that makes black-
box use of classic PIR protocols. On a popularity distribution
built from real-world data, we show that distributional PIR
reduces compute costs by 5–77× compared to existing tech-
niques. Additionally, we present new optimizations to the
state-of-the-art classical PIR protocol that decreases prepro-
cessing and query generation time by by 128–351×. Finally,
we build CrowdSurf, an end-to-end system for privately fetch-
ing tweets, and show that distributional-PIR reduces the end-
to-end server cost by 8×.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

N/A

A.2.2 How to access

Our artifact is available at:
• https://github.com/ryanleh/crowdsurf, and
• https://zenodo.org/records/14642111.

For the sake of the artifact evaluation, please use the GitHub
link as we’ll be pushing any updates, bugfixes, etc. there.

A.2.3 Hardware dependencies

To replicate the exact numbers in the paper, you will need to
access to the following AWS machines:

• a c7i.2xlarge instances,
• a c7i.4xlarge instance,
• a r7i.4xlarge instance, and
• a p3.2xlarge instance.
If you are unable to access these instances on your own,

we are happy to coordinate running these machines for you,
just let us know on HotCRP.

Note that running our code does not require access to these
exact machines: in each experiment we describe the minimal
hardware constraints necessary if you want to try and run on
different machines.

A.2.4 Software dependencies

Please see the artifact’s README.md.

A.2.5 Benchmarks

None.

(Two of our main results rely on a real-world popularity distri-
bution, however, we don’t have permission to publicly release
these. Instead, in the artifact we have hardcoded the relevant
parameters of our scheme when run on these distributions.)

A.3 Set-up

All machines used should accept TCP traffic on ports 8728
and 8729.

A.3.1 Installation

Please see the artifact’s README.md.

A.3.2 Basic Test

Please see the artifact’s README.md.

https://github.com/ryanleh/crowdsurf
https://zenodo.org/records/14642111


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our PIR optimizations reduce SimplePIR’s prepro-
cessing time by 116–351× and query generation time
by 128–349×. This is proven by the experiment (E1)
described in Section 7.1 and whose results are displayed
in Figures 3 and 4.

(C2): On the real-world Twitter popularity distribution, our
distributional PIR scheme reduces computational costs
by 5–77× and communication costs by 8.1–95× com-
pared to batch codes when instantiated with SimplePIR.
This is proven by the experiment (E2) described in Sec-
tion 7.2.1 whose results are displayed in Figure 9.

(C3): On the real-world Twitter popularity distribution, our
system, CrowdSurf, allows users to privately fetch tweets
for 8× less than existing techniques. This is proven by
experiment (E3) described in Section 9.1 and whose
results are displayed in Table 12.

A.4.2 Experiments

(E1): LHE Microbenchmarks [10 human-minutes + 30
compute-minutes]: This experiment should be run on
a c7i.4xlarge AWS instance, or any Intel-based ma-
chine that supports AVX512 intrinsics with ∼ 32GB of
memory.
How to: See the artifact’s README.md.
Results: The reported improvement for our scheme
should match the claims in C1.

(E2): Distributional PIR Microbenchmarks [10 human-
minutes + 3 compute-hours]: This experiment should be
run on a r7i.4xlarge AWS instance, or any instance
with ∼ 128GB of memory. (Note that one can signif-
icantly reduce the running time of this experiment by
omitting the numbers for the Cuckoo-based batch code
as outlined in the artifact README.)
How to: See the artifact’s README.md.
Results: The outputted numbers should visually match
Figure 9.

(E3): CrowdSurf Evaluation [1 human-hour + 1 compute-
hour]: This experiment benchmarks the costs of running
a single shard of the full CrowdSurf system–the total end-
to-end costs are interpolated from these costs. Recreating
the numbers from the paper requires two c7i.2xlarge
instance, and a p3.2xlarge instance. If desired, one
could accurately estimate these results without the GPU
machine (described in the abstract’s README.md).
How to: See the artifact’s README.md.
Preparation: All three machines will need to be
launched simultaneously, allow TCP traffic on ports 8728
and 8729, and have the correct IP addresses set in the
config file described in the abstract’s README.md.
Results: The produced numbers should match the num-

bers from Table 12.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


