
USENIX Security ’25 Artifact Appendix: H2O2RAM: A High-Performance
Hierarchical Doubly Oblivious RAM

Leqian Zheng
City University of Hong Kong

Zheng Zhang
ByteDance Inc.

Wentao Dong
City University of Hong Kong

Yao Zhang
ByteDance Inc.

Ye Wu
ByteDance Inc.

Cong Wang
City University of Hong Kong

A Artifact Appendix

A.1 Abstract
This artifact contains the source code and scripts needed to
reproduce our results. The Functional badge only requires an
Ubuntu 20.04 environment with some easily installable pack-
ages. While reproducing the results presented in our paper, an
Intel Xeon(R) Platinum 8457C processor and 2TB of RAM
are necessary. If the specific CPU is unavailable, the results
may exhibit minor deviations from the reported data. If mem-
ory is insufficient, a partial reproduction of our work for small
datasets remains feasible. In addition, completing the full set
of experiments requires several weeks, as the reported results
are amortized over a substantial number of data accesses to
more accurately assess the overhead of hierarchical ORAM.

A.2 Description & Requirements
Note that one can run H2O2RAM on a “non-confidential” ma-
chine to estimate the approximate performance overhead, as
our design focuses on concealing memory access patterns
rather than memory confidentiality and integrity (which are
handled by the confidential virtual machine).
Software Requirements: Host operating system: Debian
GNU/Linux 10 with the kernel version 5.15.120+. Confiden-
tial operating system: Ubuntu 20.04 with the same kernel
version. Virtualization components: Qemu, OVMF, and Kata.
Required tools: CMake (version ≥ 3.16), g++ (support C++-
20), libboost, libtbb-dev, libnlopt-dev, libgtest-dev (for tests),
Google Benchmark (for benchmarks), Python3.
Hardware Requirements: An Intel Xeon(R) Platinum
8457C processor (96-core) and 2TB of RAM. Confidential
virtual machine needs 64 cores and 1TB of memory.

A.2.1 Security, privacy, and ethical concerns

This artifact will not lead to any security and privacy issues.
One potential ethical concern is that running full experiment
sets may take several weeks and result in (possibly notable)
energy consumption.

A.2.2 How to access

The artifact is available on GitHub: https://github.com/
55199789/H2O2RAM/commits/66d48b9 and Zenodo https:
//zenodo.org/records/14648338.

A.2.3 Hardware dependencies

We use and recommend a physical server powered by dual
48-core Intel Xeon(R) Platinum 8457C processors and 2TB
RAM. Intel TDX, the specific TEE we use, is widely available
with 5th Gen Intel Xeon Scalable processors. Alternatively,
one can use other hardware-assisted CVMs, such as AMD
SEV requiring AMD processors. Note that a “nontrusted”
hardware (i.e., common CPUs) could also simulate our ex-
periments as Intel TDX introduces only minor performance
overheads for memory-intensive tasks (please refer to the
work). Due to corporation policy, we do not support SSH
access to the machine running our experiments.

A.2.4 Software dependencies

Setting up the TDX requires physical access to the machine
(e.g., configuring the BIOS). We recommend following the
instructions provided in the Intel TDX Module1 and Intel
TDX2 for properly creating a TD image. In specific, we offer
a guest image for CVM that includes the full experimental
setup3. This image is derived from Ubuntu 20.04 and is pre-
configured with TD guest, CMake, Google Benchmark, Boost,
OpenMP, Intel TBB, and Google Test. Inside the image, use
Python3 to run our experiment scripts.

A.2.5 Benchmarks

None.

1https://github.com/intel/tdx-module
2https://github.com/canonical/tdx
3https://zenodo.org/records/15000727/files/demo.zip

https://github.com/55199789/H2O2RAM/commits/66d48b9
https://github.com/55199789/H2O2RAM/commits/66d48b9
https://zenodo.org/records/14648338
https://zenodo.org/records/14648338
https://arxiv.org/pdf/2408.00443v1
https://arxiv.org/pdf/2408.00443v1
https://github.com/intel/tdx-module
https://github.com/canonical/tdx
https://zenodo.org/records/15000727/files/demo.zip

A.3 Set-up
A.3.1 Installation

Setting up the TDX is somewhat challenging. In case of any
failure, you may skip related steps and continue directly on
the Ubuntu 20.04 system.
Host Environment. Please follow the instructions in Intel
TDX Module and Intel TDX to setup the environment. We
also provide a sample scripts to enable Intel TDX in Host OS:

$ git clone https://github.com/canonical
/tdx.git

$ cd tdx && sudo ./setup -tdx-host.sh
$ sudo reboot

Guest Image. Build demo.raw following this guide or down-
load the pre-configured version. Then, run ./start.sh. To
boot in TD mode, uncomment lines 13∼15 of start.sh.
Software Dependencies. Log in to the TD VM and install
all required packages:

$ git clone https://github.com/55199789/
H2O2RAM.git

$ cd H2O2RAM && sudo ./setup.sh

To compile H2O2RAM:

$ mkdir build && cd build
$ cmake .. && make -j

A.3.2 Basic Test

Host Environment. Run ./25.tdx_host_check.sh in the
project directory. The output should include

[22.593272] tdx: TDX module initialized.

TD VM. Log in to the TD VM and check that the memory
encryption is active by dmesg | grep -i tdx. The output
should look like:
[0.000000] tdx: Guest detected
[3.211618] Memory Encryption Features active: Intel TDX
[l3.230680] process: using TDX aware idle routine

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): H2O2RAM outperforms ENIGMAP by a factor ranging
from 100× to 997× for oblivious map accesses with
results reported in Figure 8 (a). H2O2RAM is compared
with GraphOS for oblivious single-source shortest path
computation as shown in Figure 8 (b), with GraphOS’s
results taken directly from its paper. Note that GraphOS
and EnigMap neither compare nor cite each other. This
claim is proven by the experiment E1.

(C2): H2O2RAM’s performance under different scenarios (e.g.,
available threads, data block sizes). This is proven by
the experiment (E2) discussed in §5.1 whose results are
shown in Figure 7.

(C3): More precise failure probabilities of bucket hash tables
& stashless Cuckoo hash tables. This is proven by the
experiment (E3) discussed in §5.1 whose results are
shown in Figure 5.

A.4.2 Experiments

(E1): [Evaluation on different oblivious tasks] [10 human-
minute + 6 compute-hour + 1 TB memory]: A one-time
preprocessing process will take about several compute-
days. If your memory is insufficient, partial results will
be produced.
How to: Under the project folder, run cd benchmarks/
&& python3 omap_exp_script.py and python3
osssp_exp_script.py to obtain our results. In case
of any interruption/corruption, please retry the Python
scripts. Follow the instructions in the adapted repository
to reproduce ENIGMAP’s results. While GraphOS’s
results are taken directly from its paper, rather than
being rerun in our environment.
Results: benchmarks/result_omap_{n}.json will
include results for oblivious maps with n data blocks.
benchmarks/results_sssp.json will include results
for oblivious single-source-shortest-path computations
across different graph sizes.

(E2): [Evaluation on different scernarios] [30 human-minute
+ 12 compute-hour + 1 TB memory]: A one-time prepro-
cessing process will take about several compute-days. If
memory is insufficient, partial results will be produced.
How to: Under the project folder, run cd benchmarks/
&& nohup python3 oram_exp_script.py &. In case
of any interruption/corruption, please try nohup
python3 oram_exp_script.py & again.
Results: benchmarks/result_{n}_{b}_{t}.json
includes results for n data blocks of size b with t threads.

(E3): [Concrete failure probabilities] [10 human-minutes +
1 compute-hour]: Leverage numeric methods to compute
concrete failure probabilities of a) bucket hash tables for
different bucket sizes ℓ and bucket numbers m, and b)
stashless Cuckoo hash tables for different table sizes n
and number of hash functions k.
How to: Under the project folder, run cd
failure_probabilities/ && ./compile.sh.
Then run the compiled binaries ./fail_prob_a and
./fail_prob_b respectively.
Results: ./fail_prob_a will output ℓ versus different
numbers of buckets. ./fail_prob_a will output con-
crete failure probabilities δ with logarithmic values to
the base 2 against different n and k.

A.5 Notes on Reusability

One can directly replace std::vector with H2O2RAM in their
implementation to hide memory accesses. However, H2O2RAM

https://github.com/intel/tdx-module
https://github.com/intel/tdx-module
https://github.com/canonical/tdx
https://blog.programster.org/create-ubuntu-20-kvm-guest-from-cloud-image
https://zenodo.org/records/15000727/files/demo.zip
https://github.com/55199789/PathORAM.git

is not thread-safe even if all threads are performing only read
operations, as reads can modify H2O2RAM’s internal states.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

