
USENIX Security ’25 Artifact Appendix: Flexway O-Sort:
Enclave-Friendly and Optimal Oblivious Sorting

Tianyao Gu
Carnegie Mellon University

Oblivious Labs Inc.

Yilei Wang
Alibaba Cloud

Afonso Tinoco
Carnegie Mellon University

Oblivious Labs Inc.

Bingnan Chen
HKUST

Ke Yi
HKUST

Elaine Shi
Carnegie Mellon University

Oblivious Labs Inc.

A Artifact Appendix

A.1 Abstract
These artifacts are meant to complement the paper Flexway
O-Sort: Enclave-Friendly and Optimal Oblivious Sorting.

Our goal with the artifacts is to provide our opensource
implementation of Flexway O-Sort, experiments that allow to
easily replicate the results in our paper, and details explanation
on how the security goals are achieved by our implementation
code. We additionally provide the code of all the baseline /
state of the art algorithms used to compare against our imple-
mentation.

We provide all our experiment code either as single line
commands or as a simple script file to make results simpler to
reproduce, and the commands/file should be simple to modify
to try new sets of experimental parameters.

Our main goal with the experiments is not to reproduce the
exact same numbers as we have in our graphs, as it will vary
greatly with hardware used, but to show that the speedup we
obtain, as well as the assymptotic behavior is similar to the
shown in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None. Our code does not have any destructive steps nor does
it disable any security mechanisms. We do not export any data
and the data used is artificial.

A.2.2 How to access

The code artifacts are available in zenodo: https://zenodo.
org/records/14629454

A.2.3 Hardware dependencies

In terms of infrastructure all of our experiments were run on
the same machine, with the following specifications:

• Intel Xeon Platinum 8352S processor with 2.2 GHz
base frequency

• 1TB DDR4 RAM, 512GB of maximum EPC size.

A.2.4 Software dependencies

Our artifacts are meant to be run under docker, please see the
installation steps in order to know how to build and launch
the docker container.

A.2.5 Benchmarks

We ran artificial benchmarks on sorting arbitrary arrays com-
paring with several sorting implementations. And on gener-
ating a histogram, initializing an ORAM and load balancing,
comparing Flexway O-Sort with bitonic sort.

A.3 Set-up
A.3.1 Installation

First, build the docker image:

Listing 1: build docker images

docker build -t cppbuilder:latest
./tools/docker/cppbuilder

Second, for every test, run docker at the top level of the
repo, mounting the ssd for storage and with access to SGX
(running with privileged works for this):

Listing 2: start test environment

docker run -v /tmp/sortbackend:/ssdmount \
--privileged -it --rm -v $PWD:/builder

cppbuilder

We expect every experiment to be run inside this docker envi-
ronment.

https://zenodo.org/records/14629454
https://zenodo.org/records/14629454

A.3.2 Basic Test

We include 3 tests here.
(T1) Make sure the code compiles:

Listing 3: compile the code

rm -rf build # optional
export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
cmake -B build -G Ninja

-DCMAKE_BUILD_TYPE=Release
ninja -C build

(T2) Make sure the unit tests pass:

Listing 4: run unit tests on the code

./build/tests/test_algo

(T3) Make sure the test enclave compiles and a basic sorting
test runs in HW mode:

Listing 5: compile and run a test enclave

cd applications/sorting
./algo_runner.sh

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Flexway O-Sort is an assymptotically optimal and con-
cretely efficient sorting algorithm suitable for implemen-
tation in hardware enclaves such as Intel SGX having
speedups when compared to other state of the art oblivi-
ous sorting algorithms for enclaves.
(E1a) and (E1b) show the speedup of Flexway O-Sort
against other oblivious sorting algorithms in an enclave
setting, supporting the claim (C1).

(C2): Flexway O-Sort is also optimal when the input size is
smaller than the EPC size, and still outperforms other
state of the art oblivious sorting algorithms for enclaves.
(E4) Shows the speedup of Flexway O-Sort against
other oblivious sorting algorithms when the input size
is smaller than the enclave size. From it we can see that
Flexway O-Sort also outperforms the other state of the
art oblivious sorting algorithms, supporting the claim
(C2).

(C3): The shuffling algorithm used in Flexway O-Sort outper-
form the state of the art oblivious shuffling algorithms,
such as Waks-in/Waks-out and OrShuffle, regardless of
element and input size.
(E2a) and (E2b) show the speedup of Flexway O-Sort
against other oblivious shuffling algorithms in an enclave
setting, supporting the claim (C3).

(C4): Using Flexway O-Sort as a replacement to commonly
used oblivious sorters, such as bitonic sorter, leads to
immediate speedups in various applications.
Experiments (E3) show the speedup for ORAM initial-
ization, histogram generation and database join, when
we replaced Flexway O-Sort with an external memory
optimized recursive bitonic sorter. The results support
the claim (C4).

(C5): Our implementation of Sorting are memory oblivious.
We don’t have any experiment for this, but we encourage
looking at both the algorithm description in the paper
and the code to conclude that all branches and memory
accesses do not depend on private data.

A.4.2 Experiments

Most of our experiments are run across exponentially increas-
ing array sizes from a few thousand to 109 elements. We also
vary the size of each element, from 8 bytes to 1 kilobyte.

For all the experiments where data < EPC, we run them
through ninja test, for all the experiments where EPC <
data, we have a file ’applications/sorting/algo_runner.sh’ that
launches the experiments and needs to be modified accord-
ingly for each experiment, please see the comments in the file
for information regarding what the modifications do, and see
the file appplications/sorting/README.md for the parame-
ters used for each figure.
(E1a): [Sorting, EPC < data] [15 human-minutes + 10

compute-hour]: Fig. 7(a)
How to: Change the parameters in algo_runner.sh to
match the ones for Figure 7(a). Run the script. Collect
the points and plot them using a log-log scale.
Preparation: Do the initial setup.
Execution: Change the parameters in algo_runner.sh to
match the ones for Figure 7(a). Run the script. Collect
the points in some file and plot them using a log-log
scale.
The script will generate a file name as:

<ALGORITHM_NAME>_<MIN_ELEMENT_SIZE>_
<MAX_ELEMENT_SIZE>_<MIN_ARRAY_SIZE>_
<MAX_ARRAY_SIZE>.out.

Each line on the file will have the format:

<ARRAY_SIZE> <ELEMENT_SIZE> <TIME in
seconds>

Collect these points in some file and plot them using a
log-log scale.
Results: After plotting all the graphs, you should obtain
a plot similar to Figure 7a. in the paper. You can see
that Flexway O-Sort (KWayButterflySort) outperforms
the other oblivious sorting algorithms, and has a slope
similar to the one of the non-oblivious merge-sort.

(E1b): [Sorting EPC < data] [15 human-minutes + 10
compute-hour]: Fig. 7(b)
How to: Repeat the same steps as in E1a, but with the
parameters for Figure 7(b).
Preparation: same as E1a.
Execution: same as E1a.
Results: You should obtain a plot similar to Figure 7b.
in the paper. You can see that Flexway O-Sort outper-
forms the other oblivious sorting algorithms.

(E2a): [Shuffling, EPC < data, varying array size] [15
human-minutes + 10 compute-hour]: Fig. 10(a)
How to: Repeat the same steps as in E1a, but with the
parameters for Figure 10(a).
Preparation: same as E1a.
Execution: same as E1a.
Results: You should obtain a plot similar to Figure 10a.
in the paper. You can see that KWayButterfly Shuffle
outperforms the other oblivious shuffling algorithms.

(E2b): [Shuffling, EPC < data, varying item size] [15 human-
minutes + 10 compute-hour]: Fig. 10(b)
How to: Repeat the same steps as in E1a, but with the
parameters for Figure 10(b).
Preparation: same as E1a.
Execution: same as E1a.
Results: You should obtain a plot similar to Figure 10b.
in the paper. You can see that KWayButterfly Shuffle
outperforms the other oblivious shuffling algorithms.

(E3a): [Application Benchmarks, EPC < data] [15 human-
minutes + 3 compute-hour]: Table 3 (128MB EPC)
How to: Change the parameters in algo_runner.sh to
match the ones for Table 3: Benchmark Results for Dif-
ferent Applications. Run the script. Collect the speedup
between running the application with Flexway O-Sort
and the optimized recursive bitonic sorter in a table sim-
ilar to Table 3 in our paper.
Preparation: Do the initial setup.
Execution: Change the parameters in algo_runner.sh
to match the ones for Table 3: Benchmark Results for
Different Applications. Run the script. Collect the points
in a table and see that there is always a speedup when
using Flexway O-Sort instead of the bitonic sorter.
The script will generate a file in the same format as in
E1a. Each benchmark type will have a different format,
printing the elements size, some debug information and
the time it took to run the algorithm using Flexway O-
Sort and the optimized recursive bitonic sorter.
Results: You can see that by replacing the optimized
recursive bitonic sorter with Flexway O-Sort there is
always a speedup in the different applications tested.

(E3b): [Application Benchmarks, EPC > data] [15 human-
minutes + 3 compute-hour]: Table 3 (EPC > data)
How to: Build the project as in (T1) and run the binary
in ./build/tests/test_apps. The tests will output the run-
time for baseline and our as can be seen in table 3.

Preparation: Do the initial setup and compilation in
releases mode (T1).
Execution: Build the project as in (T1) and run the
binary ./build/tests/test_apps:
Collect the points in a table and see that there is always
a speedup when using Flexway O-Sort instead of the
optimized recursive bitonic sorter.
Each benchmark type will have a different format, print-
ing the elements size, some debug information and the
time it took to run the algorithm using Flexway O-Sort
and the optimized recursive bitonic sorter.
Results: You can see that by replacing the optimized
recursive bitonic sorter with Flexway O-Sort there is
always a speedup in the different applications tested.

(E4): [Sorting, EPC > data] [15 human-minutes + 3
compute-hour]: Fig. 6(a)
How to: Run the ninja tests described bellow for the
sorting algorithm, described bellow, which uses the pa-
rameters for Figure 6(a).
Preparation: Do the initial setup and ninja build.
Execution: Run the following command:

./build/tests/test_basic_perf
--gtest_filter=*TestSortInternal*

This will output the time it took to sort arrays of different
sizes using several algorithms, when EPC > data. Collect
the points in a file and plot them using a log-log scale,
similarly to E1a.
Results: You can see the behavior of the different sort-
ing algorithms when EPC > data. You can conclude
that Flexway O-Sort (KWayButterflySort) outperforms
the other oblivious sorting algorithms, and has a slope
similar to the one of the non-oblivious std::sort.

A.5 Notes on Reusability
We included our code as part of the opensource Oblivious
Data Structure Library project on https://github.com/
odslib/oblsort. We are actively developing it, both in order
to do further reserach in oblivious algorithms as well as in
order to provide a way for developers to incorporate oblivious
algorithms into enclave code. We made our code to be easy
integrable into enclave applications. The several application
examples we included are a good starting point on how to use
this sorting primitive.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/odslib/oblsort
https://github.com/odslib/oblsort
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

