
USENIX Security ’25 Artifact Appendix: Catch-22: Uncovering
Compromised Hosts using SSH Public Keys

Cristian Munteanu
Max Planck Institute for Informatics

Georgios Smaragdakis
Delft University of Technology

Anja Feldmann
Max Planck Institute for Informatics

Tobias Fiebig
Max Planck Institute for Informatics

A Artifact Appendix

A.1 Abstract
This paper presents an Internet-scale scanning tool designed
to identify compromised SSH servers by analyzing SSH be-
havior during public key authentication. Our tool detects mali-
cious SSH keys by sending authentication challenges without
accessing the compromised systems or requiring audit-level
privileges. This approach ensures a non-intrusive and ethical
method for assessing exploited SSH servers.

A.2 Description & Requirements
This section describes our scanning tool, including hardware
and system requirements, as well as ethical considerations.
Additionally, we provide installation and testing instructions.

A.2.1 Security, Privacy, and Ethical Considerations

Our study uses a set of public keys known to be involved in
malicious activities. These keys were shared with us through
our collaboration with Bitdefender and cannot be publicly dis-
closed. Revealing these keys would diminish the effectiveness
of our scans, as malicious actors could identify and replace
their compromised keys. However, some of these keys are
publicly available and can be found through a simple web
search. For Experiment 1 A.4.2, we have additional resources,
including IP prefixes, IP addresses, and SSH keys, which can-
not be publicly disclosed. These materials will be provided to
the evaluation committee during the evaluation process.

On another note, the nature of the artifact must be carefully
considered. The scanning tool, particularly when used at a
large scale, can place significant pressure on the scanned net-
works. This may lead to unintended consequences, including
unforeseen disruptions and dissatisfied system administrators.
To mitigate these risks, it is essential to maintain a block-
list, ensure 24/7 contact availability, and carefully regulate
the scan rate. Additionally, for an Internet-wide scan, obtain-
ing approval from an Institutional Review Board (IRB) is
mandatory.

A.2.2 Accessing the Artifact

The artifact is available at: https://edmond.mpg.de/
dataset.xhtml?persistentId=doi%3A10.17617%2F3.
LVPCS6

A.2.3 Hardware Requirements

The recommended minimum system specifications:
- 4 CPU cores
- 4 GB of RAM
- An active Internet connection

For a full-scale Internet-wide scan, we recommend using
at least four machines, each with the following specifications:
- 16 core AMD EPYC 7232 or better
- 64 GB memory
- 10gbit network connection
- at least 4TB NVMe in raid 1

A.2.4 Software Requirements

Our scanning tool was tested and deployed on Debian 12. It
requires ZMap 1 for port scanning and a patched version of
ZGrab2 (included in the artifact). The scanning script will
automatically download ZMap and build the patched ZGrab2.

The following software dependencies are required:

• Go (version 1.19 or later) – Install using: sudo apt-get
install golang (Debian 12);

• Bash (/bin/bash) – Installed by default on a standard
Debian 12 system.

A.2.5 Benchmarks

None.

1https://github.com/tumi8/zmap

https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6
https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6
https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6

A.3 Set-Up

Follow these steps to set up the scanning tool:

• Download the scanner.tar.gz

• Extract the tarball using: tar -xvf scanner.tar.gz.

• Navigate to the “scanner” directory. This direc-
tory contains the scan_ssh_ip.sh script and the
Zgrab2_patched folder, which holds the patched
ZGrab2 source code.

The contents of the “scanner” directory should look like this:

$ ls -alh scanner
drwxr-xr-x .
drwxr-xr-x ..
drwxr-xr-x Zgrab2_patched
-rwxr-xr-x scan_ssh_ip.sh

A.3.1 Installation

The primary dependency is Go. To install Go on Debian 12,
run:

sudo apt-get install golang

A.3.2 Basic Functionality Test

Ensure you are in the “scanner” directory.
Execute:

./scan_ssh_ip.sh -help

Expected output:

Go is installed.
go version go<version>
Usage: ./scan_ssh_ip.sh [OPTIONS]

Options:
...

A.4 Evaluation Workflow

This section outlines the necessary steps to evaluate the func-
tionality and reproducibility of our artifact.

A.4.1 Major Claims

The primary contributions of our tool are:
(C1): The scanning tool offers a reliable solution for deter-

mining whether a specific SSH public key is installed
for a particular user on a publicly accessible SSH server.

(C2): Using this tool in a global scan, we detected over
21,700 unique compromised systems spanning 1,649
ASes and 144 countries, affected by 52 verified mali-
cious keys provided by a threat intelligence partner. The
scan uncovered critical Internet infrastructure vulner-
abilities, highlighted campaigns such as the ‘fritzfrog’
IoT botnet and actors like ‘teamtnt’, and identified state-
associated malicious keys within sensitive networks. By
correlating findings with honeypot data, we revealed
disparities in attacker activity representation, including
underestimated APT operations.

A.4.2 Experiments

Experiment 1: Controlled environment This experiment
will validate our first claim (C1) regarding the reliability of
the SSH public key scanning solution. For the experiment, we
deployed multiple SSH servers preconfigured with specific
SSH keys. These test servers will be accessible only during
the artifact evaluation. Additional details, including IP pre-
fixes, SSH public/private keys, and configuration files, will
be provided to the evaluation committee (see Section A.2.1).

Each test system is configured with various user accounts
(‘root’, ‘test’, ‘foo’, and ‘bar’) and a predefined set of SSH
keys. To facilitate testing, we provide:

• A list of IPv4 prefixes and IPv6 addresses:
ipv4_prefix_list and ipv6_list;

• A collection of SSH public keys for test-
ing: mal_k_round_0, mal_k_round_1,
mal_k_round_2;

• A “ground-truth” file to compare experimental results:
sample_output.csv;

• A shell script to streamline the experiment (Figure 1):
demo_run.sh;

• A set of private SSH keys for non-root users to validate
the scanner’s capability. If the scanner detects a public
key for a user on an SSH server, the corresponding pri-
vate key can be used to establish a connection. Note that
‘root’ user keys are not shared due to security concerns:
demo_keys/.

To conduct the experiment, you will need a machine–either
a physical system or a virtual machine (VM)–that meets
the recommended minimum system specifications (see Sec-
tion A.2.3) and runs Debian 12. Follow these steps to run the
experiment:
(Step 1) Place all additional resources, provided for the eval-

uation, in the same directory as the scanner script (“scan-
ner”).

(Step 2) Ensure the script “demo.sh” is executable: chmod
+x demo.sh

(Step 3) Run the script: ./demo.sh
After adding the additional resources, the contents of the

“scanner” directory should look like this:

$ ls -alh scanner
drwxr-xr-x .
drwxr-xr-x ..
drwxr-xr-x demo_keys
drwxr-xr-x Zgrab2_patched
-rwxr-xr-x demo_run.sh
-rw-r--r-- ipv4_prefix_list
-rw-r--r-- ipv6_list
-rw-r--r-- mal_k_round_0
-rw-r--r-- mal_k_round_1
-rw-r--r-- mal_k_round_2
-rwxr-xr-x scan_ssh_ip.sh

After the script execution, the results can be found
the demo_run.csv file. The Zmap and Zgrab2 output
files can be found in the ssh_scan_results_v4/ and
ssh_scan_results_v6/ folders.

Experiment 2: Internet-Compromised SSH This experi-
ment will validate our second claim (C2) regarding the feasi-
bility of conducting a full-scale Internet scan and accurately
identifying SSH servers compromised by known malicious
SSH keys. The data for our study was generated through this
experiment.

For a full-scale Internet-wide scan, we recommend using
at least four machines, each meeting the specifications out-
lined in Section A.2.3. We strongly advise using physical
machines rather than virtual machines (VMs) to prevent po-
tential network-related issues. A VM may struggle to handle
a sustained high volume of packets, potentially biasing the
results.

To replicate this experiment, we define a series of steps.
However, some of these steps are not strictly deterministic and
cannot be precisely reproduced; they should be considered
as guidelines. Nevertheless, each step is crucial and must be
executed.

It is important to note that certain steps may take an un-
predictable amount of time, affecting the overall duration of
the experiment. For example, the Institutional Review Board
(IRB) approval process can take anywhere from two weeks
to six months, depending on the IRB’s policies and workload.
Additionally, the IRB may impose limitations on the scanning
speed (e.g., restricting scans to no more than 50,000 packets
per second).

As a benchmark, in our experiment, obtaining ethical ap-
proval took over three weeks. Conducting a full IPv4 scan for
a single user with 52 keys required approximately 13 days,
followed by an additional 3-4 days to scan the IPv6 addresses
in the ipv6hitlist.

Follow these steps to run the experiment:
(Step 1) Obtain SSH public keys. Since the public keys

we used cannot be shared (see Section A.2.1), you can
instead source malicious SSH public keys from pub-
licly available locations such as security blogs or public
databases of Indicators of Compromise (IOCs). For in-
stance, a widely known malicious SSH public key can
be identified by its label–‘mdrfckr’–which is referenced
in our paper as MK06.

(Step 2) Define the target IP address range. For IPv4 scan-
ning, you can use the ‘0.0.0.0/0’ prefix to cover the en-
tire IPv4 address space. For IPv6, consider using the
ipv6hitlist service to obtain a list of active IPv6 ad-
dresses.

(Step 3) Build an IP blocklist for IPv4 and IPv6.

• For IPv4, a good starting point is the IANA IPv4
Special-Purpose Address Registry, which contains
non-routable and reserved addresses.

• Store the blocklist prefixes in a separate file and
specify it when running the scan script.

• For IPv6, since entire prefixes cannot be scanned,
filtering must be done at the individual IP level.
Begin by removing IPs listed in the IANA IPv6
Special-Purpose Address Registry. Tools such as
grepcidr can assist in this process.

(Step 4) Obtain Institutional Review Board (IRB) ap-
proval. For large-scale scans, obtaining IRB approval is
mandatory before execution. The IRB committee will
assess the ethical implications of the experiment and
determine the appropriate scanning rate while ensuring
compliance with best practices (Menlo Report 2, Dru-
menic et al.). Setting up informative rDNS, maintaining
accurate WHOIS records, hosting a website that explains
your scanning activities, and ensuring 24/7 availability
via phone and email would constitute the requirements
for adhering to best practices.

(Step 5) Run the scan. Start the scan using the script pro-
vided in the artifact. Throughout the scanning process,
ensure that the blocklist remains up to date to prevent un-
intended scanning of restricted or sensitive IP addresses.

A.5 Notes on Reusability

This artifact is designed for long-term reusability. It provides
the necessary tools to detect SSH-compromised hosts across
the Internet. Anyone collecting malicious SSH public keys
can use this artifact to identify systems compromised by those
keys.

A comprehensive ‘README’ file is included in the artifact,
detailing:

2https://www.dhs.gov/sites/default/files/publications/
CSD-MenloPrinciplesCORE-20120803_1.pdf

https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf

#!/bin/bash

OUT_FILE="demo_run.csv"

Check if jq is installed
if command -v jq &> /dev/null; then

echo "JQ is installed."
else

echo "Installing JQ..."
sudo apt-get update && sudo apt-get -y install jq

fi
jq --version

echo "====== Starting Demo ======"
echo "Estimated run time per user: ~3m40s"
echo "Total estimated time: ~30 min"

Run scans for different users over IPv4
for user in foo bar test root; do

./scan_ssh_ip.sh -ipwhitelist=ipv4_prefix_list -port=22 -user=$user -scantype=4
-wait=10

done

Run scans for different users over IPv6
for user in foo bar test root; do

./scan_ssh_ip.sh -ipset=ipv6_list -port=22 -user=$user -scantype=6 -wait=10
done

echo "IP,USER ,Key" > $OUT_FILE
cat ssh_scan_results */*/key_* | grep "key-accepted\":true" | jq -r ’.ip + "," + .

data.ssh.result.dummyauth.user + "," + .data.ssh.result.dummyauth.key’ >>
$OUT_FILE

echo "Demo run finished. Output file: $OUT_FILE"

Figure 1: SSH script for demo run.

• How to execute a scan

• How to adjust scan parameters (e.g., wait times, network
interface selection)

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Considerations
	Accessing the Artifact
	Hardware Requirements
	Software Requirements
	Benchmarks

	Set-Up
	Installation
	Basic Functionality Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

