
USENIX Security ’25 Artifact Appendix:
Encarsia: Evaluating CPU Fuzzers via Automatic Bug Injection

Matej Bölcskei
ETH Zurich

Flavien Solt
ETH Zurich

Katharina Ceesay-Seitz
ETH Zurich

Kaveh Razavi
ETH Zurich

A Artifact Appendix

A.1 Abstract

We provide the source code of ENCARSIA along with a
Docker-based evaluation setup to facilitate reproducing the
results presented in our accompanying paper and to support
ENCARSIA’s deployment for evaluating future CPU fuzzers.
These artifacts demonstrate that ENCARSIA is a fully func-
tional tool capable of injecting bugs into CPUs, formally veri-
fying their architectural observability, and leveraging the gen-
erated bugs to assess fuzzers.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

ENCARSIA is a bug injection and fuzzer benchmarking tool
that does not pose any security risks, as it is not designed
to attack the evaluation system. However, its high degree of
parallelism, combined with the significant computational cost
of formal verification and RTL simulation, can overwhelm
system resources and potentially cause crashes.

A.2.2 How to access

Our artifacts are accessible for permanent access on Zen-
odo at https://doi.org/10.5281/zenodo.14664723. Al-
ternatively, they can be accessed via GitHub at https://
github.com/comsec-group/encarsia.

A.2.3 Hardware dependencies

ENCARSIA runs on any standard hardware, but requires sub-
stantial computing resources to handle the demands of formal
verification, RTL simulation, and to take full advantage of
parallelization for accelerating the experiments. We therefore
recommend a machine with at least 32 CPU cores, 256 GB
of main memory, and 512 GB of disk space. For detailed re-
quirements of each experiment, refer to their descriptions in
Section A.4.2.

A.2.4 Software dependencies

The following software dependencies are required for running
ENCARSIA:
• docker: to run the experiments in the provided Docker

environment.
• make: for automating tasks like building the Docker image.
• tar: to extract the EnCorpus dataset, which is provided as

a .tar.gz archive.
• python3: for parsing the results of our bug survey.
If you prefer to run the experiments outside the Docker setup,
the Dockerfile can serve as a reference for the necessary
software dependencies.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Clone the artifact repository using the GitHub link provided
in Section A.2.2, or download it from the permanent access
link to our artifacts on Zenodo. After cloning the repository,
navigate to the root directory of the repository and run make
pull to fetch the pre-built Docker image. Alternatively, you
can run make build to build the Docker image locally.

After obtaining the Docker image, use make run to start a
container from the image. Note the container ID displayed in
the terminal output. You can use it later to restart and attach
to the container for further experiments with docker start
<container_id> && docker attach <container_id>.

A.3.2 Basic Test

Make sure the Docker container is running and attached.
Navigate to the /encarsia-meta directory and run python
encarsia.py -d out/EnCorpus -H ibex rocket boom
-p 30 to confirm that ENCARSIA is functioning correctly and
parsing the EnCorpus dataset as expected.

https://doi.org/10.5281/zenodo.14664723
https://github.com/comsec-group/encarsia
https://github.com/comsec-group/encarsia


A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Bugs in open-source CPUs often stem from two simple
syntactic transformations: mix-ups of signals or logic
expressions and errors in conditional statements. This is
proven by the bug survey (E1) described in Section 4 of
the paper whose results are reported in Table 4.

(C2): ENCARSIA can rapidly inject a large number of di-
verse, realistic bugs into CPUs of varying complexity
and design paradigms. This is proven by the injection
experiment (E2) described in Section 7.1 of the paper
whose results are reported in Table 5.

(C3): ENCARSIA can formally prove the architectural ob-
servability of bugs within a practical timeframe using
computational resources typical for hardware design and
verification. This is demonstrated by experiment (E3),
which follows a similar approach to the verification ex-
periment described in Section 7.1 of the paper whose
results are reported in Table 6. To make our verification
framework more accessible, we provide a fully open-
source version based on Yosys.

(C4): Instruction-granular bug detection mechanisms do not
demonstrate greater potential for detecting bugs. This is
demonstrated by the instruction-granular bug detection
evaluation (E4) described in Section 8.1 of the paper
whose results are reported in Table 8.

(C5): The hardware-specific structural coverage metrics, ad-
vertised as central by many fuzzers, are of little help in
detecting bugs. This is demonstrated by the coverage
metrics evaluation (E5) described in Section 8.2 of the
paper whose results are reported in Table 9.

(C6): The fuzzer seeds are a key factor that determines which
bugs will eventually be detected. This is demonstrated by
the seed program experiment (E6) described in Section
8.3 of the paper whose results are reported in Table 10.

A.4.2 Experiments

All experiments are intended to be run within the provided
Docker environment to ensure consistency and reproducibil-
ity. Before running each experiment, ensure that your system
has sufficient computing resources available to meet the re-
quirements specified for the experiment.
(E1): [Survey (Section 4)] [5 human-minutes]: The

results of our bug survey are available in
survey/classification/synthetic.json and
survey/classification/natural.json within the
main artifacts repository (not Docker image).
Execution: Use survey/classification/plot.py
to display the results of the survey.
Results: The results of the survey confirm that all iden-
tified observable bugs indeed do fall into one of the two
categories.

(E2): [Injection (Section 7.1)] [5 human-minutes + 20
compute-minutes + 100GB disk + 8GB memory]: This
experiment exactly replicates the injection experiment
described in Section 7.1 of the paper.
Execution: Navigate to the /encarsia-meta directory
and run python encarsia.py -d out/Injection
-H ibex rocket -p 30. Optionally, add boom to the
-H option to inject bugs into BOOM, but note that this
requires up to 512GB of disk space.
Results: This experiment injects around 1000 Sig-
nal Mix-ups and 1000 Broken Conditionals per
CPU. The resulting host.v files and injection
logs can be found in the experiment directory at
/encarsia-meta/out/Injection. A summary of the
injection results, similar to Table 5 in the paper, is printed
to the terminal. We expect the summary table to closely
match the one presented in the paper.

(E3): [Bug Verification] [5 human-minutes + 1 compute-
hour + 6GB disk + per-process memory (device de-
pendent: 4 GB for Ibex, 8 GB for Rocket, 32 GB for
BOOM)]: This experiment closely replicates the verifi-
cation experiment outlined in Section 7.1 of the paper,
with the main difference being our use of a fully open-
source verification setup based on Yosys. Additionally,
we limit the experiment to bugs from the EnCorpus bug
set to reduce the duration of the experiment.
Execution: Assess your system’s computing resources
to determine the number of parallel processes it
can support for this experiment. Then, navigate
to the /encarsia-meta directory and run python
encarsia.py -d out/EnCorpus -H ibex rocket
boom -p NUM_PROC -Y, replacing NUM_PROC with the
number of parallel processes. You can also execute the
experiment on one device at a time by running python
encarsia.py -d out/EnCorpus -H DEVICE -p
NUM_PROC -Y for each of the three devices. This
ensures optimal memory usage, despite varying memory
requirements across devices.
Results: This experiment generates formal proofs
of architectural observability for the EnCorpus bugs
using the Yosys setup. The resulting verification
log (yosys_verify.log) and proof of observability
(yosys_proof.S) can be found in the EnCorpus exper-
iment directory at /encarsia-meta/out/EnCorpus.
Additionally, a summary of the verification results, sim-
ilar to Table 6 in the paper, is printed directly to the
terminal. Note that EnCorpus was verified using the
JasperGold setup, which is more robust and powerful.
As a result, not all EnCorpus bugs are expected to ver-
ify successfully using Yosys. We nevertheless expect
Yosys to verify most of the EnCorpus bugs in the sim-
pler CPUs (Ibex and Rocket) and a smaller subset in the
more complex BOOM. Furthermore, we expect the aver-
age verification time per bug to be similar to the values



reported in Table 6 of the paper.
(E4): [Instruction-granular bug detection evaluation]

[5 human-minutes + 10 compute-hours + 100GB disk
+ 4GB memory per parallel process]: This experiment
closely replicates the fuzzing experiment outlined in
Section 8.1 of the paper, with the main difference being
the reduced fuzzing duration of 30 minutes.
Execution: Navigate to the /encarsia-meta directory
and run python encarsia.py -d out/EnCorpus
-H rocket boom -p 30 -F no_cov_difuzzrtl
no_cov_processorfuzz.
Results: This experiment generates two key out-
puts: a fuzzing log stored in fuzz.log, and the
bug detection results (after filtering out false pos-
itives) in check_summary.log. Both files are lo-
cated within the corresponding fuzzer directories at
/encarsia-meta/out/EnCorpus. Additionally, a sum-
mary of the fuzzing results, similar to Table 8 in the
paper, is printed directly to the terminal.
We expect the results to match those presented in the
paper, except for Rocket Signal Mix-up 1 and BOOM
Signal Mix-ups 9 and 14. These bugs are detected by
DifuzzRTL and Processorfuzz in the Docker setup, but
remain undetected in the bare-metal setup used to gener-
ate the data presented in the paper despite several fuzzing
re-runs. We suspect this discrepancy stems from differ-
ing versions of dependencies, such as Spike or Verilator,
used internally by the fuzzers. However, the lack of trans-
parency regarding which tools are used and their specific
versions makes it difficult to determine the exact cause.
Despite this discrepancy, we firmly believe that the major
claims of the paper remain valid.

(E5): [Coverage metrics evaluation] [5 human-minutes + 10
compute-hours + 100GB disk + 4GB memory per par-
allel process]: This experiment closely replicates the
fuzzing experiment outlined in Section 8.2 of the pa-
per, with the main difference being the reduced fuzzing
duration of 30 minutes.
Execution: Navigate to the /encarsia-meta
directory and run python encarsia.py -d
out/EnCorpus -H rocket boom -p 30 -F
difuzzrtl processorfuzz.
Results: This experiment generates two key out-
puts: a fuzzing log stored in fuzz.log, and the
bug detection results (after filtering out false pos-
itives) in check_summary.log. Both files are lo-
cated within the corresponding fuzzer directories at
/encarsia-meta/out/EnCorpus. Additionally, a sum-
mary of the fuzzing results, similar to Table 9 in the
paper, is printed directly to the terminal.
As in the previous experiment, we observe discrepancies
between the Docker and bare-metal setups for Rocket
Signal Mix-up 1 and BOOM Signal Mix-ups 9 and 14.

(E6): [Seed program evaluation] [5 human-minutes + 90

compute-minutes + 10GB disk + 4GB memory per par-
allel process]: This experiment closely replicates the
fuzzing experiment outlined in Section 8.3 of the pa-
per, with the main difference being the reduced fuzzing
duration of 30 minutes.
Note that this experiment reuses the results of the Di-
fuzzRTL evaluation from experiment (E5), if available,
which reduces computation time and disk space require-
ments. If the results of experiment (E5) are not available,
the requirements are approximately half those of experi-
ment (E5).
Execution: Navigate to the /encarsia-meta directory
and run python encarsia.py -d out/EnCorpus -H
rocket boom -p 30 -F difuzzrtl cascade.
Results: This experiment generates two key out-
puts: a fuzzing log stored in fuzz.log, and the
bug detection results (after filtering out false pos-
itives) in check_summary.log. Both files are lo-
cated within the corresponding fuzzer directories at
/encarsia-meta/out/EnCorpus. Additionally, a sum-
mary of the fuzzing results, similar to Table 10 in the
paper, is printed directly to the terminal.
As in the previous experiments, we observe discrep-
ancies between the Docker and bare-metal setups for
Rocket Signal Mix-up 1 and BOOM Signal Mix-ups 9
and 14 on DifuzzRTL. However, the results for Cascade
exactly match those reported in the paper.

A.5 Troubleshooting Guide
• OOM Errors: Ensure your system meets the minimum

memory requirements specified for the experiment by re-
ducing the number of parallel processes (-p NUM_PROC).

• Running Out of Disk Space: Verify that your system has
sufficient disk space before starting an experiment. Clean
up old experiment outputs if necessary.

• Badly Terminated Parallel Experiments: If an experi-
ment is terminated ungracefully, some processes may re-
main running in the background. Use ps to identify and
terminate any processes stuck in an infinite loop.

A.6 Notes on Reusability
ENCARSIA can be easily extended to support additional
CPUs by creating a new EncarsiaConfig instance in
/encarsia-meta/config.py. For more information, see the
README in the ENCARSIA repository.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Troubleshooting Guide
	Notes on Reusability
	Version


