ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security ’25 Artifact Appendix: Bots can Snoop: Uncovering
and Mitigating Privacy Risks of Bots in Group Chats

Kai-Hsiang Chou*
National Taiwan University

Jonathan Weiping Li
National Taiwan University

A Artifact Appendix

A.1 Abstract

This artifact appendix includes the following components: (1)
analysis scripts for the Pushshift Telegram dataset; (2) basic
chatbot implementations for various messaging services; and
(3) the prototype implementation of SnoopGuard, our pro-
posed secure group messaging protocol. First, we provide the
analysis scripts for the Pushshift Telegram dataset, as used
in Section 3.2 of our paper. These scripts demonstrate the
prevalence of repeatedly encountering chatbots across differ-
ent groups. Our analysis reveals that when a user joins a new
group containing chatbots, there is a 3.6% chance that at least
one of the chatbots can recognize and associate the user with
their previous interactions in other groups. Second, we include
basic chatbot implementations for Discord, Keybase, LINE,
Slack, and Telegram, along with tutorials on intercepting pack-
ets to and from these chatbots. These implementations help
examine the information that chatbots can access and ver-
ify whether they support end-to-end encryption, as discussed
in Section 4 of our paper. Finally, we provide a prototype
implementation of SnoopGuard, our proposed secure group
messaging protocol. This implementation is based on existing
open-source libraries for the Signal Protocol and Message
Layer Security (MLS). Additionally, we include benchmark
scripts and the performance evaluation results referenced in
Section 6.2.2 and Appendix D of our paper. Our prototype
implementation shows that sending a message in a group of
50 users and 10 chatbots takes about 10 milliseconds when
integrated with MLS.

A.2 Description & Requirements

Our artifacts include three components: (1) analysis scripts for
the Pushshift Telegram dataset; (2) basic chatbot implemen-
tations for various messaging services; and (3) the prototype

“Both authors contributed equally to this research.
THsu-Chun Hsiao (hchsiao@csie.ntu.edu.tw) is the corresponding author.

Yi-Min Lin*
National Taiwan University

Tiffany Hyun-Jin Kim
HRL Laboratories

Yi-An Wang
National Taiwan University

Hsu-Chun Hsiao®
National Taiwan University
Academia Sinica

implementation of SnoopGuard, our proposed secure group
messaging protocol.

A.2.1 Security, privacy, and ethical concerns

The risks of this artifact align with general expectations and
do not pose significant threats to system security, data privacy,
or ethical concerns.

A.2.2 How to access

The Ilatest version of the source code is avail-
able on GitHub (https://github.com/csienslab/
snoopguard-artifact). The specific version used in the
main paper can be accessed on GitHub (https://github.
com/csienslab/snoopguard-artifact/tree/5649ba9)

or on Zenodo (https://zenodo.org/records/14729613).

A.2.3 Hardware dependencies

Pushshift Telegram Dataset Analysis. The data analysis
process consists of two parts: (1) data preprocessing, and
(2) data analysis. The first step involves downloading the
Pushshift Telegram dataset and importing it into PostgreSQL,
which requires approximately 1 TB of storage. To simplify
reproduction, we have included the processed and extracted
data in our source code as several pickle files (Python’s object
serialization format). These pickle files can be used directly
without downloading the full dataset. The second step has no
specific hardware requirements.

Basic Chatbot Implementations. No specific hardware
requirements.

SnoopGuard Reference Implementation. The implemen-
tation requires at least 16GB of RAM to complete the bench-
mark. The benchmark tests were executed on a Mac mini with
an Apple M2 processor and 16 GB of RAM. The provided


https://github.com/csienslab/snoopguard-artifact
https://github.com/csienslab/snoopguard-artifact
https://github.com/csienslab/snoopguard-artifact/tree/5649ba9
https://github.com/csienslab/snoopguard-artifact/tree/5649ba9
https://zenodo.org/records/14729613

Geekbench script assumes an AArch64 (ARMG64) architec-
ture. Running the script on other architectures may require
modifications to download compatible versions.

A.2.4 Software dependencies

Pushshift Telegram Dataset Analysis. We use PostgreSQL
for data storage and extraction, and Python for writing the
analysis scripts. As mentioned earlier, the processed and ex-
tracted data are included in our source code as several pickle
files to facilitate reproducibility. These pickle files can be
used directly, eliminating the need for PostgreSQL.

Basic Chatbot Implementations. Our chatbots are imple-
mented on multiple platforms, including Discord, Keybase,
LINE, Slack, and Telegram, using Node.js (v20.18.0) in our
experiments. We use Wireshark to monitor HTTP and Web-
Socket connections and ngrok to create reverse proxies.

SnoopGuard Reference Implementation. Running the
implementation requires a Go compiler (v1.21)." For resource-
constrained benchmarks, Docker is also required.

A.2.5 Benchmarks

None.

A.3 Set-up

Pushshift Telegram Dataset Analysis. The analysis code
can be found in the analyze_pushshift directory. To repro-
duce the data preprocessing process, download the Pushshift
Telegram Dataset *. Set up a PostgreSQL database using the
schema provided in import_data/schema.sql. Then, im-
port the data using the scripts located in import_data/*.py
from our repository.

Basic Chatbot Implementations. To execute the refer-
ence chatbot implementations, install Node.js, Wireshark, and
ngrok. One also needs to apply for chatbot tokens from each
platform’s website. Detailed setup instructions are available
in the README file of each implementation.

SnoopGuard Reference Implementation. Install the Go
compiler.

A.3.1 Installation

Pushshift Telegram Dataset Analysis. To
reproduce the data export process, run
analysis/dump_data_to_pickle.py to generate the

! At the time of writing, some of the packages we used do not support Go
v.1.24 or higher.
2https://zenodo.org/records/3607497

pickle files. Alternatively, one can use the pre-exported data
provided in our repository to skip this step.

Basic Chatbot Implementations. The setup process for
each chatbot platform varies. Detailed instructions can be
found in the README file for each implementation.

SnoopGuard Reference Implementation. No additional
steps are required beyond cloning the repository.

A.3.2 Basic Test

Pushshift Telegram Dataset Analysis. No functionality
test is needed.

Basic Chatbot Implementations. Each chatbot is designed
to echo any message it receives. To test this, send a message
to the group. If the chatbot is set up correctly and receives the
message, it will echo the input message.

SnoopGuard Reference Implementation. To test that the
environment is set up correctly, run the test scripts using the
following commands.:

go test ./pkg/user -v -timeout 0
go test ./pkg/chatbot -v -timeout 0

If the test case passes, the last line of the output would start
with ok. All test cases should pass.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our analysis of the Pushshift Telegram dataset shows
that 3.6% of users interact with the same chatbots across
multiple groups. This result is demonstrated by experi-
ment (E1) in Section 3.2.

(C2): Our analysis of chatbots on Discord, Keybase, LINE,
Slack, and Telegram reveals that platform support for
message access control and end-to-end encryption varies.
Table 1 provides a detailed comparison. This finding is
demonstrated by experiment (E2) in Section 4.1.

(C3): Our reference implementation of SnoopGuard achieves
the benchmark results shown in Figures 4 and 5. Specifi-
cally, adding a chatbot to a group of 50 members takes
about 2 milliseconds, regardless of the protocol. Sending
a message to 50 members and 10 chatbots takes about 10
milliseconds when using MLS and about 5 milliseconds
with the Sender Keys Protocol. These results are vali-
dated by experiment (E3) in Section 6.2.2 and Appendix
D.


https://zenodo.org/records/3607497

A.4.2 Experiments
(E1): [Cross-Group Identification Analysis] [30 human-

minutes + 20 compute-hour + 1TB disk]:

How to: Follow the instructions in Appendix A.3 and
the README file to set up the Pushshift Telegram
Dataset Analysis.

Preparation: As described in Appendix A.3 and the
READMEE file, data preprocessing involves download-
ing the Pushshift Telegram Dataset, importing it into
PostgreSQL, and using the provided script to generate
pickle files. Alternatively, one can use the preprocessed
pickle files included in the source code to save time and
reduce storage requirements.

Execution: Run analysis/chatbot_analysis.py
to reproduce the results discussed in Prevalence
of Cross-Group Chatbots (Section 3.2). Run
analysis/bot_user_encounter_ana.py to re-
produce the results from User-Chatbot Encounters
(Section 3.2).

Results:

* Prevalence of Cross-Group Chatbots: The script
prints the number of chatbots appearing in multi-
ple groups. The results indicate that 253 chatbots
(35.2%) were present in more than one group.

¢ User-Chatbot Encounters: The script
analysis/bot_user_encounter_ana.py
displays the results summarized in the main article
at the end of the output. The analysis shows that
42,508 users (3.6%) encountered the same chatbot
in multiple groups. Out of 4,155,927 user-chatbot
pairs that interacted at least once, 97,813 pairs
(2.4%) had multiple encounters.

(E2): [Chatbot Design Analysis] [3 human-hour]:

How to: Follow the instructions in Appendix A.3 and
the accompanying README file to set up the basic
chatbots on various platforms.
Preparation: The setup process for chatbots varies
across platforms. Detailed instructions for configuring
the chatbots and using Wireshark to intercept HTTP /
WebSocket connections can be found in the correspond-
ing README files.
Execution: Once the chatbots are set up, create a group
on each platform and add the chatbot to the group. The
steps for testing the chatbots’ message access control are
provided in Section 4.1.
Results: The expected results are shown in the rows
Message access control, Group E2EE (w/ bots), and Hide
sender in Table 1. Respective evaluation criteria are
listed below:

» Receiving chatbots’ echo indicates that it has access

to message.

* Plain text intercepted by Wireshark indicates ab-
sence of E2EE.

 User identifiers intercepted by Wireshark indicates
not hiding sender.

(E3): [SnoopGuard Benchmark] [6 compute-hour + 16GB
RAM]:
How to: Follow the instructions in the README file.
Preparation: Ensure that the Go compiler is installed.
Execution: Run the script benchmark_roundtrip.sh
to perform a full benchmark. The execution times re-
ported in the paper are the median values (p50).
Results: The output results will be stored in the
benchmark_results/native_roundtrip/. In the re-
sult files, the keyword IGA indicates the use of Snoop-
Guard to achieve selective internal group anonymity
(IGA). The keyword Pseudo indicates the use of Snoop-
Guard to achieve pseudonymity, as described in Sec-
tion 5.5. If no keyword is present, the original protocol
(Sender Keys Protocol or MLS) was used. The expected
results are shown in Figure 5 and Figure 6.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


