
USENIX Security ’25 Artifact Appendix: Evaluating the Effectiveness
and Robustness of Visual Similarity-based Phishing Detection Models

Fujiao Ji1, Kiho Lee1, Hyungjoon Koo2, Wenhao You3, Euijin Choo3, Hyoungshick Kim2, Doowon Kim1

1University of Tennessee, Knoxville 2Sungkyunkwan University 3University of Alberta

A Artifact Appendix

A.1 Abstract

Phishing attacks pose a significant threat to Internet users,
with cybercriminals elaborately replicating the visual ap-
pearance of legitimate websites to deceive victims. Visual
similarity-based detection systems have emerged as an effec-
tive countermeasure, but their effectiveness and robustness
in real-world scenarios have been underexplored. In this pa-
per, we comprehensively scrutinize and evaluate the effec-
tiveness and robustness of popular visual similarity-based
anti-phishing models. To facilitate reproducibility and ac-
celerate scientific progress–particularly in strengthening col-
lective efforts in combating phishing attacks–we share the
resources while adhering to ethical considerations. Given
that our work primarily involves evaluation, encompassing
multiple datasets and experiments, this artifact appendix high-
lights key claims and experiments conducted with the Phish-
pedia detection model to demonstrate the process. Detailed
information is available in our GitHub repository https:
//github.com/Fujiaoji/PhishingEval.

A.2 Description & Requirements

In this section, we provide the essential details needed to
replicate the same experimental setup and execute the artifact.

A.2.1 Security, privacy, and ethical concerns

Our research involves the APWG eCX phishing dataset. To
maintain ethical standards, we provide HTML, screenshots,
and domains without revealing URLs. Furthermore, we utilize
open-source models and websites.

Note that, the apwg451514 dataset requires a large amount
of space. Additionally, when running the ‘DynaPhish’ model,
please avoid using large datasets, as exceeding the free ac-
count credits will result in additional charges.

A.2.2 How to access

We share the resources on our website (https:
//moa-lab.net/evaluation-visual-similarity-
based-phishing-detection-models/) and Zen-
odo (https://doi.org/10.5281/zenodo.14804193).
The code is available on our GitHub repository
(https://github.com/Fujiaoji/PhishingEval). Note
that, we share the apwg451514 dataset through OneDrive
since it occupies a very large space. Please fill out the form
on our website to access this share.

A.2.3 Hardware dependencies

We run the codes on both CPU and GPU (NVIDIA A30).

A.2.4 Software dependencies

We run the codes on ‘Ubuntu 24.04.1 LTS’ and organize the
environments through Anaconda. DynaPhish requires the on-
line search and therefore needs to register the Google Cloud
account and a browser for execution. Since there are seven
baseline models and each model requires a distinct runtime
environment, we therefore provide detailed installation in-
structions a bash file and respective txt file. Due to the page
limitations, we share more details in the ‘README.md’ file
on GitHub.

A.2.5 Benchmarks

The artifact mainly contains three components: (I) our col-
lected datasets, (II) codes, and (III) retrained models.

Specifically, the (I) collected datasets consist of eight sec-
tions: (1) the APWG dataset (apwg451514, Table 2), (2) a
sampled subset of the APWG dataset (phishing4190, Table
3), (3) a selected failed 6000 examples from APWG dataset
(failed_examples_csv, Table 3), (4) a general benign dataset
covering 100 domains (archive100, Table 4), (5) a benign
dataset for 110 common brands between phishing datasets
and reference lists, also used for ablation studies and ma-
nipulations (crawl_benign, Table 7, Table 8, and Table 9),
(6) reference lists (expand277, expand277_new, merge277,

https://github.com/Fujiaoji/PhishingEval
https://github.com/Fujiaoji/PhishingEval
https://moa-lab.net/evaluation-visual-similarity-based-phishing-detection-models/
https://moa-lab.net/evaluation-visual-similarity-based-phishing-detection-models/
https://moa-lab.net/evaluation-visual-similarity-based-phishing-detection-models/
https://doi.org/10.5281/zenodo.14804193
https://github.com/Fujiaoji/PhishingEval


merge277_new), (7) a visible manipulation dataset (visi-
ble_dataset2, Table 8 and Table 9), and (8) a perturbed dataset
(perturbated_dataset, Table 8 and Table 9).

The (II) code repository (PhishingEval) contains (1) seven
codes of detection models used for evaluating different
datasets, (2) crawler.py, a script used for data collection, (3)
run_fastdup_cluster.py used for clustering and helping us fil-
ter the dataset, and (4) data_test provides three samples for
testing.

The (III) retrained models are shared in the Zenodo. You
can download it for each through the ‘download_model.sh’
file. Or you can download the folder manually and put them
under appropriate positions based on the model structures of
the ‘README.md’ file in the GitHub.

A.3 Set-up
In this section, we outline the installation and configuration
steps for Phishpedia, as the setup steps for seven models fol-
low a similar process.

A.3.1 Installation

First, download the repository as a ‘.zip’ file instead of using
‘git clone’, as the dataset was previously uploaded to GitHub,
resulting in extensive history. Follow the total structure out-
lined in the ‘README.md’ file to properly download and or-
ganize the folders. To run a small sample in the data_test, you
need to download at least the corresponding target list datasets
through the following command bash download_data.sh
<dataset name>. For example, Phishpedia requires the logo-
based target lists dataset, which can be downloaded through
bash download_data.sh expand277_new.

After obtaining the code and datasets, the environment can
be set up following these steps. Some packages are extracted
to mitigate environmental conflicts, making them easier to
use and replace.

1 cd PhishingEval/code/reproduce_phishpedia
2 bash download_model.sh # download models
3 bash setup_cpu.sh
4 conda activate env_phishpedia

A.3.2 Basic Test

The testing sample information is stored in the ‘data_test.csv’
file. To use different inputs, please set the parameter of ‘in-
put_csv’ to your desired CSV path. The new CSV should
follow the same column structure as the ‘data_test.csv’. Then
we can use the following command to run the example. Suc-
cessful results will be saved in a CSV file. We provide the
running code for testing sample and the phishing 4190 dataset
in GitHub.

1 conda activate env_phishpedia

2 python eval_phishpedia.py -
siamese_weights=models/bit.pth.tar -
targetlist =../../data/targetlist/
expand277 -input_csv =../../data/
data_test/data_test.csv -input_folder
=../../data/data_test

A.4 Evaluation workflow

Our work primarily focuses on evaluation. Reproducing the
results requires running the entire set of experiments, which
is time-consuming. To facilitate verification, we recommend
using the sampled ‘phishing4190’, as all experiments fol-
low a similar workflow. In this section, we provide some
main claims and experiments. Additionally, we demonstrate
the time and resource requirements based on the Phishpedia
model.

A.4.1 Major Claims

(C1): Reference list-based models can introduce weaknesses.
Logos or screenshots not included in the reference list
but known to users may mislead the detection models.
This highlights the need to constantly expand and update
the reference lists and detection models. This is sup-
ported by the results in Section 5.1 (E1, E3), as shown
in Table 2 and 3.

(C2): Phishpedia demonstrates a better detection rate on
the Dsample compared to DynaPhish and PhishInten-
tion. Inaccurate keyword extraction can degrade per-
formance, while diverse screenshots and similar web
designs present challenges to screenshot-based methods.
Selecting an appropriate model structure is crucial to op-
timizing performance and mitigating these weaknesses.
This is also proved by the results in Section 5.1 (E1, E3),
as shown in Table 2 and 3.

(C3): Logo-based models currently offer the most reliable
approach for standard phishing detection and brand iden-
tification, but they are susceptible to additional checking
steps, used features, and logo components. Screenshot-
based models struggle with web design diversity but may
serve as a complementary solution for scenarios involv-
ing unknown or emerging brands. This is proved by the
brand identification experiments (E2, E3) of Table 2 and
3 in Section 5.3.

(C4): Simple visible and perturbation-based manipulations
significantly disrupt logo-based methods. Both are trans-
ferable. Screenshot-based methods maintain stable de-
tection but struggle with identifying brands when logos
are altered. This is proved by the robustness experiments
(E4) of Table 8 and 9 in Section 6.1.



A.4.2 Experiments

After running the code, the results should be saved in a CSV
file containing detection and/or image similarity outcomes.
Based on these results, you can analyze the detection or iden-
tification performance. In this section, we highlight key exper-
iments to provide further insights. The execution and results
presented are based on Phishpedia with apwg451514 dataset.
When running the code, you can replace the dataset with other
smaller-size datasets.
(E1): [Detection Effectiveness in Section 5.1] [30 human-

minute + 42 compute-hour + 250GB disk]:
Preparation: Download the apwg451514 dataset from
Zenodo, prepare the input CSV files, prepare the models
based on the set-up section, and ensure the availability
of sufficient GPU, CPU, and disk resources.
Execution: Run the evaluation codes.
Results: After getting the detection results, apply pre-
defined thresholds to decide the results. In this step, we
assume that images with high similarity to the target
will be thought of as phishing, as the entire dataset is
phishing.

(E2): [Phishing Brand Identification in Section 5.3] [60
human-minute + 42 compute-hour + 250GB disk]: The
process is similar to E1. However, after getting the re-
sults from models, it is necessary to determine if the
predicted brands match the true target brands. Since the
same brand may appear under different names, manual
verification is required to ensure accuracy.

(E3): [Detection and Identification Results on Dsample in
Section 5.] [30 human-minute + 40 compute-minute +
30GB disk]: Follows the same process as E1 and E2 but
with a smaller sample dataset.

(E4): [Robustness Evaluation in Section 6.1] [120 human-
minute + 1 compute-hour + 45GB disk]: The process
contains both detection and identification on the manip-
ulated dataset. Manual verification is also required to
ensure the accuracy.

A.5 Notes on Reusability
It is important to make the name of brands consistent when
dealing with datasets. Additionally, as original codes for cited
papers are frequently updated, it is important to check for the
latest versions to maintain compatibility and accuracy.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


