
USENIX Security ’25 Artifact Appendix: HyTrack: Resurrectable and
Persistent Tracking Across Android Apps and the Web

Malte Wessels, Simon Koch, Jan Drescher, Louis Bettels, David Klein, Martin Johns
Technische Universität Braunschweig

{malte.wessels, simon.koch, jan.drescher, louis.bettels, david.klein, m.johns}@tu-braunschweig.de

A Artifact Appendix

A.1 Abstract

Android apps can freely intermix native and web content
using Custom Tabs and Trusted Web Activities. This blurring
of the boundary between native and web, however, opens the
door to HyTrack, a novel tracking technique. Custom Tabs
and Trusted Web Activities have access to the default browser
state to enable, e.g., seamless reuse of authentication tokens.
HyTrack abuses this shared browser state to track users both
in-app and across the web using the same identifier. While
we do not find direct evidence that our technique is already
employed, our findings indicate that all essential components
are currently in place.

This artifact contains a demo with description, the proof-of-
concept apps and backend, as well as our tools for our three
measurements: Static app analysis, dynamic network analysis
of apps, and a web measurement.

A.2 Description & Requirements

Since the dynamic app network analysis requires rooted de-
vices and an intricate network setup, we exclude it from the
functionality artifact evaluation. However, our artifact con-
tains the specific version of the pipeline for posterity. It is
based on a previous publication at USENIX with minimal
changes. Our version is functional but not within the scope
of this artifact evaluation. Refer to that previous publications
artifact appendix1, the READMEs in our artifact, as well as
the current development version2 for more information.

A.2.1 Security, privacy, and ethical concerns

Since HyTrack is a Proof-Of-Concept implementation of a
new tracking technique, it tracks users by design. Make sure
that the general public does not use PoC instances. Since it is a
PoC implementation, we do not guarantee security. However,
it is neither destructive nor a security risk by design.

1https://www.usenix.org/conference/usenixsecurity23/
presentation/koch

2https://github.com/App-Analysis/scala-appanalyzer

The web scraper will request the specified hosts, and the
static analysis pipeline will decompile the provided APKs.

A.2.2 How to access

The artifact is available on Zenodo at https://doi.org/10.
5281/zenodo.14718794.

A.2.3 Hardware dependencies

Our PoC can be run on real Android phones. However, we
rely on the Android emulator to streamline the testing for
this artifact evaluation. Therefore, we require a capable x86
host system with hardware-accelerated emulation and a few
gigabytes of RAM and storage for the Android guest. Hard-
ware acceleration can be turned on in the host’s UEFI, and
it is called Intel Virtualization Technology (VT-x, vmx) or
AMD-V (SVM)3.

Additionally, we require about 20 GB of Docker images
that will be pulled or built.

A.2.4 Software dependencies

A modern Linux system with docker, docker-compose, and
Python 3. An Android toolchain with the commands adb,
emulator, avdmanager, and sdkmanager must be available.
Refer to your distros resources or Android Studio to install
them.

A.2.5 Benchmarks

The app analysis requires an (any) Android app as a single
APK file to be run on. An easily accessible source for free
APKs is fdroid 4. The web scraper requires a list of hosts to
scrape. However, it is bundled with one exemplary list.

3https://developer.android.com/studio/run/
emulator-acceleration

4https://f-droid.org/en/packages/

https://www.usenix.org/conference/usenixsecurity23/presentation/koch
https://www.usenix.org/conference/usenixsecurity23/presentation/koch
https://github.com/App-Analysis/scala-appanalyzer
https://doi.org/10.5281/zenodo.14718794
https://doi.org/10.5281/zenodo.14718794
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration
https://f-droid.org/en/packages/

A.3 Set-up

A.3.1 Installation

Emulator Setup Create a new Android virtual de-
vice (AVD). Ensure the image is available by run-
ning sdkmanager "system-images;android-30;
google_apis_playstore;x86". Create the device
via avdmanager create avd -n hytrack0 -k "system
-images;android-30;google_apis_playstore;x86"
--device "Nexus 5". Start the device via emulator

@hytrack0. Note that this blocks this terminal window.

Mobile Chrome Setup Wait for the device to boot and
launch Chrome. Click through its first-use setup. Trusted
Web Activities used by HyTrack require a Digital Asset
Link. Regularly, Chrome only accepts HTTPS to fetch
Digital Asset Links We must disable this for local testing5: In
the mobile Chrome, navigate to chrome://flags. Search
for and enable “Enable command line on non-rooted
devices”. Restart Chrome as prompted. On the host, run
adb shell "echo '_ --disable-digital-asset-link
-verification-for-url=\"http://10.0.2.2\"' > /
data/local/tmp/chrome-command-line".

Android Build Container We can use a docker container
to build the apps and avoid conflicts with your host system.
This requires a small setup step, as the apps are signed
with a release key. In the PoC subfolder, run docker run
-it -v `pwd`:/in runmymind/docker-android-sdk

:ubuntu-standalone-20250210 --entrypoint=bash.
This will launch a shell in the container. To generate signing
keys for testing run keytool -genkey -v -keystore /
root/testdeploykey -keyalg RSA -alias key0. Use
‘password’ as the password. Skip all questions with Enter,
and confirm the empty selections with a ‘yes’. Don’t close
this container’s terminal until you have built the apps by
completing the following steps. The working directory is
mounted inside the container at /in.

A.3.2 Basic Test

1. To test the PoC web server, it is sufficient to run docker
-compose up on the host system in the PoC/webapp
directory and to navigate to localhost in your favourite
browser. A page is loaded.

2. To test the PoC apps (CrossAppLauncher, CrossApp-
TrackerOne), compile them with the build container: In
the container’s terminal, cd into one app’s folder at /in
and run ./gradlew assemble. Repeat with the other
app.

5https://developer.chrome.com/docs/android/
trusted-web-activity/integration-guide#debugging

3. To test the webscraper, run docker build . -t wk-
crawler:latest in the webscrape folder.

4. To test the static app analysis, run docker-compose
--env-file .env up -d in staticanalysis/

analysis/pipeline/.

5. Ensure that the demo folder contains a playable video
and a description file.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): HyTrack can track users across the web and native
applications. It can restore itself from browser storage
resets, and is seamless.

(C2): We provide toolchains to search for indications of Hy-
Track in the wild.

A.4.2 Experiments

(E1): [Demo reenactment] [20 human-minutes]: Re-
enacting the demo shows HyTrack capabilities.
How to: Watch the demo video and reenact it in the
emulator. Note that in HyTrack threat model, a track-
ing provider hosts its backend on a domain. In the pa-
per, we’ve used the generic domain ad.com. For the
demo, we hosted the backend on the URL examplecorp
.de. Replace that with http://10.0.2.2 in the em-
ulator, which maps to localhost port 80 on your host
system. The other tracking web page maps to http
://10.0.2.2:8080 in the emulator.
The 20 minutes includes getting familiar with the video
and setup. The demo itself can be conducted in two
minutes.
Preparation: With a running emulator, web server, and
compiled apps, as described in the Set-Up and Basic
test sections, install both apps to the emulator with
adb install app-release.apk in the app/build/
outputs/apk/release/ directories.
Execution: Watch the demo video in the Demo folder,
read the demo description in the file next to it, and re-
enact it step-by-step in your emulator setup. Adjust the
domains as described above. Instead of clicking on short-
cuts to URLs, please type them in Chrome’s URL bar.
The ‘clear storage’ option might be moved to 3-Dots-
Menu -> Settings -> Privacy.
Results: A similar behavior to the video should be
achieved. Some minor differences can occur: Due to
the debugging mode, Chrome displays a warning about
enabled flags, which can be dismissed. Depending on
the Chrome version present on the virtual device, the
‘Running in Chrome‘ notice and position of the ‘clear
storage’ options might be different.

https://developer.chrome.com/docs/android/trusted-web-activity/integration-guide#debugging
https://developer.chrome.com/docs/android/trusted-web-activity/integration-guide#debugging

(E2): [Webscrape] [10 human minutes]
How to: Relates to C2: To demonstrate our web scraper,
which scrapes the DAL from websites, we run it on
three websites. DALs are required to run TWAs, one
component used by HyTrack.
Preparation: docker build . -t wk-crawler:
latest in the webscrape folder.
Execution: To scrape google.com, wikipedia.org,
and youtube.com for DALs, run docker run -v
$PWD/resources:/resources wk-crawler:latest
-endpointsFilePath=/resources/dal.txt -

websitesFilePath=/resources/test_top-5000.
csv in the webscrape folder. Afterward, copy the
results out of the docker container: docker cp
containerName:/proj/wellKnownCrawlerMain/
crawl_results results. Replace containerName
with the container name. It can be found via docker ps
-a | grep wk-crawler.

Results: A results folder, containing subfolders. The
endpointInformation subfolder contains a (poten-
tially hidden) .well-known subfolder, containing a sub-
folder for assetlinks, which includes a JSON. This should
contain results for the asset links found.

(E3): [Static App Analysis] [10 human minutes]
How to: Relates to C2: We will run the static analy-
sis pipeline on one application to demonstrate its func-
tionality. It searches for features that could be used to
implement HyTrack or its components.
Preparation: Download one APK6 in a new folder
staticanalysis/analysis/pipeline/apks. Run
python analysis/pipeline/folder2json.py
apks/ in that folder to generate the file apps.json.
This file is the input for the static pipeline.
Execution: Run docker-compose --env-file .
env up -d to prime the pipeline. If you get a port
blocked error, quit the emulator or any running ADB
process, as ADB defaults to the same port. Run
docker-compose --env-file .env --profile
init up -d to start the analysis.
Results: A JSON file in the analysis/pipeline/
results folder. It contains many keys for CT features,
TWA features, extracted DALs, and schemes. For the ex-
ample app, all entries are empty/false except for schemes,
which contain ‘HTTP’ and ‘HTTPS’.

A.5 Notes on Reusability
This work and our HyTrack-PoCs are intended as an early
warning sign, we assume and hope that the issue is fixed
systematically in the future. The PoCs could then be used to
validate the fixes.

The dynamic app analysis pipeline is actively maintained.
If you intend to use it for your work, check out its latest

6https://f-droid.org/repo/cz.martykan.webtube_17.apk

version on GitHub7 to profit from all future fixes and fea-
tures. The static app analysis is a fork from previous work
by Beer at al. which is available at https://github.com/
beerphilipp/tabbed-out.

Refer to the READMEs in the subfolders for more details.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

7https://github.com/App-Analysis/scala-appanalyzer

https://f-droid.org/repo/cz.martykan.webtube_17.apk
https://github.com/beerphilipp/tabbed-out
https://github.com/beerphilipp/tabbed-out
https://secartifacts.github.io/usenixsec2025/
https://github.com/App-Analysis/scala-appanalyzer

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

