
USENIX Security ’25 Artifact Appendix: “Endangered Privacy: Large-Scale
Monitoring of Video Streaming Services”

Martin Björklund, Romaric Duvignau
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden
martibjo@chalmers.se, duvignau@chalmers.se

A Artifact Appendix

This artifact appendix guides the reader into reproducing the
results (i.e., plots) of our paper. Since we provide the raw
network capture and the entire tool chain to reproduce our
evaluation, all claims contained in our work can be reproduced
with our artifact.

A.1 Abstract
Our work presents a fingerprinting-based attack on streaming
platforms where the attacker is shown to be capable of rapidly
and accurately identifying any video from the streaming ser-
vice, based on capturing network traffic (either as a “strong
attacker” by having access to the network or by eavesdropping
a wifi connection aka the “weak attacker” model).

Our entire fingerprint dataset (covering the streaming plat-
forms Amazon Prime Video, Max and SVT Play) and all the
needed tools to run the attack are made publicly available in
our Zenodo permanent artifact1, which includes:

• TSV datasets (in datasets/tsv/) containing video
metadata and fingerprints from Amazon, Max, and SVT;

• karl (Go source files software/karl/, binary
karl-x86_64-linux), our data collection tool for
retrieving fingerprints;

• BurstShark (Rust source files software/burstshark/,
binary burstshark-x86_64-linux), our TShark wrap-
per tool for network traffic capture;

• Models (Python modules software/models.py and
software/datasets.py) implementing the video iden-
tification logic.

In addition, our artifact also contains the data that we have
used during our evaluation:

• PCAP capture files from the main evaluation (in
datasets/pcaps/), the unknown traffic experiment (in

1https://doi.org/10.5281/zenodo.14676526.

datasets/unknown-pcaps/), and DAITA testing (in
datasets/daita-pcaps/);

• An evaluation script (Python script
software/evaluate.py) to reproduce the main
results;

• Miscellaneous scripts (in software/misc/),
e.g., the automated WebDriver streaming script
(software/misc/webdriver-stream/main.py).

At last, note that tables appearing in our evaluation are
simply summarization of results that our evaluation script also
produces. We also provide the pcaps we used with Mullvad’s
DAITA service activated (in datasets/daita-pcaps) that
we mention in § 5 “Mitigation” as a preliminary evaluation.

In addition, to speed-up the reproducibility of all
our results, we provide preprocessed pcap data in
software/precomputed/. This data allows calculat-
ing the results of the identification of the 900 videos played
during our evaluation for one set of parameters within a few
minutes. The preprocessed data can also be reproduced as
well but requires longer time and larger memory requirement
as the 3 k-d trees are stored in memory during the evaluation
(following the weak attacker model).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

We hereby certify that all our tools are harmless. The source
code of the three developed programs is shared and is short
to verify (under a few hundred lines of codes for each tool):

• for our network capture program BurstShark, in the
software/burstshark folder (written in Rust) for the
precompiled binary burstshark-x86_64-linux;

• for our fingerprinting data collection tool karl, in the
software/karl folder (written in Go) for the precom-
piled binary karl-x86_64-linux;

https://doi.org/10.5281/zenodo.14676526


• in the software/ folder for our Python identification
tool: modules datasets.py and models.py and our
evaluation script evaluate.py.

Disclaimer: One of our artifact’s tool (karl) collects data
directly from live services, which might contravene terms
of service (ToS) of the targeted platforms. It’s designed for
research purposes and should be used with caution. Addi-
tionally, since the program interacts with live services, the
functionality may break at any moment if the targeted services
update their implementation.

A.2.2 How to access

Our artifact is permanently hosted on the Zenodo platform:
https://doi.org/10.5281/zenodo.14676526.

A.2.3 Hardware dependencies

No special hardware is required to run our artifact, however
the memory requirements are as follows:

• For running the evaluation based on preprocessed
pcaps: a minimum of about 32 GB is recommended.
In our tests, memory usage of the evaluation script typi-
cally peaked at about 20 GB.

• For running the evaluation from the raw pcap files as
well as running the identification tool (with a database
of 240k videos for the 3 services, as in our evaluation)
in live tests: a minimum of 192 GB of memory is recom-
mended.

A.2.4 Software dependencies

Our tools are dependent on the following libraries/programs:

• Python packages (main identification tool): joblib,
numpy, pandas, pyarrow, python-dateutil, pytz, scikit-
learn, scipy, six, threadpoolctl, tzdata; (web driver used
in our automatized evaluation) attrs, certifi, charset-
normalize, h11, idna, outcome, packaging, PySocks,
python-dotenv, requests, selenium, sniffio, sortedcon-
tainers, trio, trio-websocket, typing_extensions, urllib3,
webdriver-manager, websocket-client, wsproto;

• Python 3.12.4;

• tshark for BurstShark.

Required python packages are listed in the corresponding
requirement files.

In our artifact, we provide precompiled binaries for Linux
X86_64 architecture. If one needs other architecture or wishes
to compile the binaries from the source files, the standard Go
and Rust compilation toolkit are necessary.

In this guide, we give command-lines for a Unix user, how-
ever, all our tools are also available on other OS. For running

the time measurement tests (E1 in § A.4.2), the bc utility is
used, it can be installed e.g. on Debian-based distributions
with:

sudo apt-get install bc

Streaming Platform Subscriptions In this guide, all exam-
ples do not require any login information on the streaming
platforms used. In particular, this concerns retrieving the fin-
gerprint directly from a video’s URL using our karl tool. To
run our data collection tool for the Amazon Prime and Max
platforms, one needs to set the required cookies by being au-
thenticated on the streaming platforms, i.e., the authentication
cookies ("ubid-main", "x-main", and "at-main" for Amazon;
"st" for Max) are required so to access certain data.

A.2.5 Benchmarks

The only required datasets and models are the ones provided
in our artifact and the VNAT public dataset.

A.3 Set-up
A.3.1 Installation

Download The README provided as part of our Zenodo
artifact record describes how to setup our artifact:

1. Download2 the two necessary archives from Zenodo’s
permanent record datasets.tar.gz (23.8 GiB, uncom-
pressed 97.2 GiB) and software.tar.gz (5.9 GiB, uncom-
pressed 7.9 GiB) and decompress both archives in the
same directory, i.e., run the following commands:

mkdir endangered-privacy
cd endangered-privacy
wget https://zenodo.org/records/15051891/files/

datasets.tar.gz
tar -xvzf datasets.tar.gz
wget https://zenodo.org/records/15051891/files/

software.tar.gz
tar -xvzf software.tar.gz

2. To rerun the full unknown traffic evaluation, the
VNAT dataset is required; the dataset can be down-
loaded from MIT’s webserver3. Download (36 GB)
and extract the dataset from VNAT Dataset directly
into the datasets/unknown-pcaps/ directory (e.g.,
datasets/unknown-pcaps/VNAT_release_1/).

Installation (via conda) Here follows guided instructions
for installing the required Python packages via conda4 with

2For convenience, we provide here direct links to elements of version
v5 of our artifact. If a newer version becomes available, we recommend to
download the latest version of the artifact.

3https://www.ll.mit.edu/r-d/datasets/
vpnnonvpn-network-application-traffic-dataset-vnat.

4https://www.anaconda.com/download/success.

https://doi.org/10.5281/zenodo.14676526
https://zenodo.org/records/15044667/files/datasets.tar.gz
https://zenodo.org/records/15044667/files/software.tar.gz
https://www.ll.mit.edu/r-d/datasets/vpnnonvpn-network-application-traffic-dataset-vnat
https://www.ll.mit.edu/r-d/datasets/vpnnonvpn-network-application-traffic-dataset-vnat
https://www.anaconda.com/download/success


a dedicated virtual environment for running the code. First
conda must be installed, thus follow the corresponding guide
for the system at hand5. For Linux-64, this is done as follows:

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-

latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh

Then, run the following commands:

conda create -n py3124 python=3.12.4
conda activate py3124
python -m ensurepip --upgrade
pip install --upgrade pip
pip install -r requirements.txt
pip install matplotlib

Now, you can check that you can run the evaluation script:

python evaluate.py --help

Installing TShark Install TShark following https://
tshark.dev/setup/install/, e.g. on Ubuntu run:

sudo apt-get install tshark

Compile binaries from sources (optional) We use here
the standalone binary burstshark-x86_64-linux for our
tool BurstShark. If one needs to recompile it, use the source
files from folder burstshark and the appropriate Rust tools.

The karl binary, karl-x86_64-linux included in the pack-
age, is our custom data collection tool. The source code is
available in the karl/ directory and can be compiled with Go
tools.

A.3.2 Basic Test

Guided test of the data collection tool Let us first illustrate
how we gather information and metadata about the videos
we would like to fingerprint. Our data collection tool has two
options extract-urls and extract, cf. running the tool
with -help flag. Here is an example of such usage:

./karl-x86_64-linux extract https://www.svtplay.se/video
/e9qaywe/leif-och-billy/1-en-ny-tjej-i-byn

Once karl has acquired the necessary metadata for a given
video, the tool builds a fingerprint for each representation of
the queried video using the information from its manifest file.

For instance, when the above command-line is exe-
cuted, karl retrieves 10 fingerprints of the 10 representa-
tions (aka “qualities”) associated with the queried video,
with the downloaded data organized in a json (called
extract_<timestamp>.json. ) with the following format:

5https://docs.conda.io/projects/conda/en/latest/
user-guide/install/index.html.

{
"service": "svt",
"url": "https://www.svt[...]billy/1-en-ny-tjej-i-byn",
"videos": [
{
"id": "eQJRo6j",
"title": "Leif \u0026 Billy - 1. En ny tjej i byn",
"playback_url":

↪→ "https://www.svtplay.se/video/eQJRo6j",
"duration": 835,
"expires_at": "2025-04-01T23:59:00+02:00",
"variants": [
{
"mime_type": "video/mp4",
"codecs": "hvc1.2.4.L123.90",
"width": 1280,
"height": 720,
"bandwidth": 2875167,
"fingerprint": {
"segment_sizes": [
812697,
1337592,
1274793,
[...]

],
"segment_durations": [
49152,
49152,
49152,
[...]

],
"timescale": 12800

}
},
[...]

karl can also build a fingerprint directly from a manifest
file’s URL, useful for fingerprinting arbitrary manifests/mp4
files; an example of such functionality can be tested by run-
ning the following command-line:

./karl-x86_64-linux fingerprint https://media.axprod.net
/TestVectors/Cmaf/clear_1080p_h264/manifest.mpd

This generates a file fingerprint_<timestamp>.json,
with the following json schema (variant schema is identical
to variants’s format from extract’s json):
{
"url": "https://media[...]_1080p_h264/manifest.mpd",
"variant": [
{
"mime_type": "video/mp4",
[...]

[...]

As of March 2025, you can test the fingerprinting function-
ality on the 6 provided example manifest files listed in our
README.md, covering DASH manifests, HLS manifests and
Fragmented MP4.

A single entire video representation is typically gathered in
the matter of 10-100ms, hence already demonstrating that our
data collection does not require to watch the fingerprinted
videos. Note that our karl tool is designed to make the process
of mass collecting of such fingerprints very efficient: con-
nections will be kept open, reused and parallelized. Also, if

https://tshark.dev/setup/install/
https://tshark.dev/setup/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html


no country code is explicitly specified, a small geolocation
lookup subroutine is run once before downloading the fin-
gerprint(s). SVT fingerprints generally take slightly longer
because of explicit addressing requiring many requests, but
even for those videos, our tool still runs in subsecond time
per representation.

The “segment sizes” information is the one our identifi-
cation tool uses. After running our tool over the 3 studied
streaming platforms, these information have then been gath-
ered into 3 datasets. You can check how a representation is
encoded into our tsv database:

head -n 2 datasets/tsv/amazon_representations.tsv

Guided test of the identification tool For quick evaluations
or experiments (the default setting), precomputed results can
be used, significantly reducing the processing time (minutes)
and system requirements.

The standard parameters for the evaluation script (that we
have used in most of our evaluation) are:

• -model strong,weak,unknown – all models;

• -method network,wifi – all methods;

• -theta THETA – θ =2.2;

• -time [1-600] – 600;

• -recompute – this extra flag is not added at this stage so
not to recompute tsv files from raw pcaps (cf. complete
evaluation in § A.4.2);

• -burstshark-path – only if the binary is not
./burstshark-x86_64-linux.

For example, to run a single model/network evaluation with
a given θ, use:

python evaluate.py --model strong --method network --
theta 1.5 --time 600

The expected output is as follows:

Loading dataset... DONE
Eval. model ’strong’ with method ’network’... DONE
Saved ./results/strong-network-1.5-600.csv
Saved ./results/strong-network-1.5-600-aggregated.csv

Hence, this first test produces 2 “result” csv files saved in
the results folder, with the non-aggregated file showing our
identification results (successful identification and identifica-
tion time) per played video (from a pre-preprocessed pcap
capture):

device service video id[...] unknown mis[...] id_time
linux amazon amzn1.[...]2c56 1 0 0 49.15[...]
linux svt jwAypqm 1 0 0 59.9738812446594
linux max 899[...]448 1 0 0 60.25[...]
windows svt jaRm5gA 1 0 0 87.2628059387207
windows amazon amzn1.[...]70a2 1 0 0 72.60[...]
windows max e7[...]ccf6 1 0 0 70.41[...]
mac amazon amzn1.[...]f92d 1 0 0 61.4[...]

As an indication, on our recent but not high-end laptop
(CPU: Intel Ultra 7 155U, 12 cores; 32GB RAM), it took
about 3min to run that test with the program’s memory usual
usage at around 10GB and peaking at about 18-20 GB. Since
this test is running over a fixed network capture and our identi-
fication system is deterministic, re-running the evaluation will
produce identical results (note that identified_time refers
to the packet capture time not the time of the identification
system, which is negligible in comparison).

The aggregated results merge the results per platform, eg
for θ = 1.5, accuracy, precision and recall are about 98.3%
for the Max service.

To run our complete evaluation script with the standard
parameters, simply run:

python evaluate.py

This test took for us about 6min and test the strong attacker
with “network” method as well as the weak attacker with
both “network” and “wifi” methods. The unknown traffic test
creates a result unknown-scores.csv file with the following
simple format:

dataset application score
self hbomax 0.167802384471442
self hbomax 0.584277198585956
self hbomax 0.52584947872736

Since this shows the maximum score obtained by the most
likely representation-timestamp from the fingerprint database,
it suffices to check if any is above a given threshold θ to count
“false positives”; the highest value for the maximum score
is 1.998 in our experiments, hence any θ > 2 will produce 0
false positive with this test data. Recall, our recommended
and default value for θ is 2.2.

A.4 Evaluation workflow
A.4.1 Major Claims

The main claims of our work can be summarized as:
(C1): It is fast for the attacker to build the necessary finger-

print database. We provide our capture tool and show
here how to run it with some examples. The required in-
formation for an entire video is typically acquired in less
than 100ms per fingerprint, demonstrating the rapidity at
which one can build the database. We publish our entire
fingerprint database acquired by running the tool over
the libraries of the three services, something easily repro-
ducible with a laptop and an ordinary internet connection
(some of the services require being authenticated).

(C2): The proposed attack quickly shows high accuracy, re-
gardless of the type of attacker. This claim is supported
by Figure 6 which can be reproduced by running our
evaluation script over the PCAP captures that we have
recorded during our experiments. In addition, the scripts



that were used to generate our network captures are also
provided, hence one could also generate new PCAPs
under the same conditions. Figure 8 can also be repro-
duced, simply by running the provided evaluation with
different value for our threshold parameter θ.

(C3): The false positive rate is very low. This claim
is supported by the distribution of maximum scores
produced (Figure 7) by our system on the “un-
known traffic”. We provide the pcaps correspond-
ing to HBO Max and our youtube captures in folder
datasets/unknown-pcaps/self whereas the VNAT
dataset is publicly available and should be added in
datasets/unknown-pcaps/ to run the script without
modification. Our provided evaluation script directly cal-
culates the scores of Figure 7 from the network captures.

A.4.2 Experiments

To check our claim C1:
(E1): [Data-Collection] [15 human-minutes]: Test the pro-

vided tool for building the fingerprint dataset, and check
time measurements of acquiring video fingerprints.
Preparation: Follow the previous instructions on run-
ning the example tests to setup the system.
Execution: Run the commands with example URLs
and manifest files following our artifact’s README.
Check gathered information and jsons and our fingerprint
tsv databases. To test the speed of our data collection,
download and execute the following speed tests from
our artifact (this assumes the artifact was uncompressed
in the current directory as per § A.3.1’s instructions) –
time per fingerprint is the displayed time divided by 10
(number of representations for the tested video):

wget https://zenodo.org/records/15051891/files/time-
experiment.tar.gz

tar -xvzf time-experiment.tar.gz
cd time-experiment/
./time.sh 20 ../software/karl-x86_64-linux --out-

dir time-test-svt extract https://www.svtplay.
se/video/edPkzzZ/leif-och-billy/1-stromlost

Optionally, test also with more SVT videos and Ama-
zon’s time collection following the time experiments’
README’s instructions.
Results: Check the (mean, median, standard deviation)
times it took for collecting the json fingerprints.

Claims C2-C3 can be assessed using the preprocessed
pcaps following the test guide. One can also run our com-
plete evaluation directly from raw pcaps (hence, running our
burst generator over the recorded network traffic) as follows:
(E2): [Complete-Evaluation] [30 human-minutes + about

5-6 compute-hour + 192GB main memory]: To run the
entire evaluation directly from raw pcaps, it suffices to
run the evaluation program with the parameters used in
our evaluation.

Preparation: Follow the previous instructions on run-
ning the example tests to setup the system.
Execution: To recompute all data, run the command:

python evaluate.py -recompute

In our experiments, it took about 90min to build the
trees and about 5h to run BurstShark over all the raw
pcap files. The resulting files are saved in results/
folder and should be identical to the files6 used in our
evaluation.
Results: The claims are supported by reproducing the
results as shown in the paper, see results/ folder.
Use the provided plotting code to regenerate the paper’s
result figures (Figure 6, 7, and 8).
For Figure 6 of the paper, we record our information
statistics for every seconds between 1 and 600 with θ =
2.2; to reproduce the figure, run:

python plot.py 6

For Figure 7, the file unknown-scores.csv is used to
plot the distribution of maximum scores over the un-
known dataset; to reproduce the figure, run:

python plot.py 7

To reproduce Figure 8, one simply has to generate the
result files for every θ between 1 and 5 by increment of
0.05, and the figure is generated by running:

python evaluate.py --all-theta
python plot.py 8

A.5 Notes on Reusability
We welcome any re-use of our artifact in further research.

Licensing Information Our Zenodo deposit contains both
source code and datasets, each with separate licensing:

• Source Code: BSD 3-Clause License.

• Datasets: Creative Commons Attribution 4.0 Interna-
tional.

By using our artifact, you agree to comply with these re-
spective licenses.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

6All result files are provided for convenience in the folder
precomputed-results/ in https://zenodo.org/records/15020614/
files/plot-and-results.tar.gz.

https://secartifacts.github.io/usenixsec2025/
https://zenodo.org/records/15020614/files/plot-and-results.tar.gz
https://zenodo.org/records/15020614/files/plot-and-results.tar.gz

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


