
USENIX Security ’25 Artifact Appendix: Branch Privilege Injection:
Compromising Spectre v2 Hardware Mitigations by Exploiting Branch

Predictor Race Conditions

Sandro Rüegge
ETH Zurich

Johannes Wikner
ETH Zurich

Kaveh Razavi
ETH Zurich

A Artifact Appendix

A.1 Abstract
This artifact appendix provides instructions to reproduce the
results in Branch Privilege Injection: Compromising Spec-
tre v2 Hardware Mitigations by Exploiting Branch Predictor
Race Conditions. Our paper introduces Branch Predictor Race
Condition (BPRC), an event-misordering effect in branch pre-
dictors. We uncover multiple instances of this effect on recent
Intel processors and investigate the cause. To demonstrate the
impact of these vulnerabilities, we built an end-to-end attack
on Ubuntu 24.04, running a recent Linux kernel with default
mitigations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Some of the experiments require loading special kernel
modules. kmod_ap allows any user process to execute ar-
bitrary code with supervisor privileges. kmod_spec_ctrl pro-
vides persistent control over the speculation control register.
These modules compromise the system’s security but can be
manually removed using sudo rmmod ap and sudo rmmod
spec_ctrl.

Furthermore, the provided ansible scripts modify the sys-
tem configuration (i.e. GRUB, initramfs) without any addi-
tional interaction. While the scripts make an effort to return
the system to it’s previous state, please exercise extreme
caution when using the ansible scripts to ensure they do not
operate outside of your expectations. Additionally, the ansible
scripts will reboot the target system when necessary which
makes localhost unsuited to run these scripts against.

A.2.2 How to access

The artifacts are available on zenodo at https://doi.org/
10.5281/zenodo.14636810 and on GitHub at https://
github.com/comsec-group/bprc (once the embargo ends
on May, 13th). We provide the artifact evaluators with a ssh
key in the hotcrp submission to access the git repository pri-
vately during the embargo.

A.2.3 Hardware dependencies

In our paper, we evaluated a wide range of recent microar-
chitectures. The exact microarchitectures used in our paper
are:

• Core i7-14700K (Raptor Cove, Gracemont)
• Core i7-13700K (Raptor Cove, Gracemont)
• Core i7-12700K (Golden Cove, Gracemont)
• Core i7-11700K (Cypress Cove)
• Core i7-10700K (Skylake)
• Core i9-9900K (Skylake)
• Ryzen 9 9900X (Zen 5)
• Ryzen 7 7700X (Zen 4)
• Google Tensor (Cortex-X1)
• Google Tensor (Cortex-A76)

The microarchitectural experiments focus mostly on the
Intel processors with the exception of the initial asynchronous
branch predictor experiment. The attack requires Ubuntu
24.04 with kernel package version 6.8.0-47-generic. While we
developed the attack specifically for a Core i7-13700K, other
recent Intel processors should work as well, albeit potentially
less reliably.

A.2.4 Software dependencies

We use Ubuntu 24.04, 22.04, or 20.04 to compile and
run the experiments on our test machines. Our compila-
tion scripts expect Ubuntu packages build-essential,
msr-tools, clang, git, libtirpc-dev, and the kernel head-
ers (linux-headers-generic) to be present. The python
analysis scripts require python3 with matplotlib.

A.2.5 Benchmarks

Our mitigation performance evaluation employs UnixBench 1

and lmbench 2.

1https://github.com/kdlucas/byte-unixbench
2https://github.com/intel/lmbench

https://doi.org/10.5281/zenodo.14636810
https://doi.org/10.5281/zenodo.14636810
https://github.com/comsec-group/bprc
https://github.com/comsec-group/bprc


A.3 Set-up
A.3.1 Installation

Download the artifacts using one of the links in Section A.2.2.
Install the dependencies as per the README.md file. On
Ubuntu 24.04 you can use the following commands:
sudo apt install python3 python3-pip \

build-essential git clang \
linux-headers-$(uname -r) msr-tools \
libtirpc-dev

pip install matplotlib

A.3.2 Basic Test

There is a special experiment to help you verify your
setup in experiments/exp-test-setup. Please follow the
README.md in the same directory to run the setup test.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Branch predictor updates on recent Intel processors
can occur after a measurable delay. This is proven by the
experiment (E1) whose results are reported in Section
5.1 and Figure 3.

(C2): As a result, branch predictions can be injected from
user to kernel ((E2), Table 2), from guest to host ((E3),
Section 5.3) and across IBPB ((E4), Section 5.3).

(C3): We can use these vulnerabilities to build an end-to-end
attack to leak arbitrary kernel memory and ‘/etc/shadow‘
on an Intel Raptor Lake system with Ubuntu 24.04
((E10), Section 7).

A.4.2 Experiments

(E1): [exp-btb-delay] [5 human-minutes + 2 compute-hours]:
Experiment to determine IP-based branch predictor
(BTB) insertion delay (C1).
Execution: Please follow the instructions located at
experiments/exp-btb-delay/README.md
Results: On Intel processors, we observe a high number
of mispredictions when the delay (number of NOPS) is
low and vice versa

(E2): [exp-leak-supervisor] [5 human-minutes + 5 compute-
minutes]: Experiment to determine if BPRCU→K is pos-
sible on recent Intel processors (C2).
Execution: Please follow the instructions located at
experiments/exp-leak-supervisor/README.md
Results: We observe a success percentage above the
noise level on at least two of the three tested instruction
on recent Intel processors

(E3): [exp-leak-hypervisor] [5 human-minutes + 5 compute-
minutes]: Experiment to determine if BPRCG→H is pos-
sible on recent Intel processors (C2).

Execution: Please follow the instructions located at
experiments/exp-leak-hypervisor/README.md
Results: We observe a success percentage above the
noise level on at least two of the three tested instruction
on recent Intel processors

(E4): [exp-leak-ibpb] [5 human-minutes + 5 compute-
minutes]: Experiment to determine if BPRCIBPB is pos-
sible on recent Intel processors (C2).
Execution: Please follow the instructions located at
experiments/exp-leak-ibpb/README.md
Results: We observe a success percentage above the
noise level on at least two of the three tested instruction
on recent Intel processors

(E5): [exp-ibp-insertion] [5 human-minutes + 5 compute-
minutes]: Experiment to determine if a prediction is
inserted into the BTB and IBP the first time it is seen.
Execution: Please follow the instructions located at
experiments/exp-ibp-insertion/README.md
Results: We ran this experiment on the Intel perfor-
mance (P-Cores), Cypress Cove and Skylake cores. For
’Random History’ we expect many hits on the BTB
(>90%) and very few on the IBP (<1%). For ’Match-
ing History’ we expect few hits on the BTB (<10%) and
many hits on the IBP (>90%).

(E6): [exp-leak-supervisor-discern] [5 human-minutes +
5 compute-minutes]: Experiment to determine if
BPRCU→K is caused by the BTB or IBP on Intel.
Execution: Please use instructions at experiments/
exp-leak-supervisor-discern/README.md
Results: We expect to see hits on the BTB above the
noise level while there are no hits above noise level on
the IBP.

(E7): [exp-syscall-split] [5 human-minutes + 3 compute-
hours]: Experiment to determine the effect of timing
on BPI.
Execution: Please follow the instructions located at
experiments/exp-syscall-split/README.md
Results: We expect to see the number of hits in the ker-
nel decrease with increasing number of NOPs while the
number of hits in user increases with increasing number
of NOPs.

(E8): [exp-leak-rounds] [5 human-minutes + 5 compute-
minutes]: Test reliability of BPI when repeatedly attack-
ing the same victim branch without modifying history
with and without BHI_DIS_S.
Execution: Please follow the instructions located at
experiments/exp-leak-rounds/README.md
Results: With only eIBRS we expect a decreasing suc-
cess rate over successive repetitions. With BHI_DIS_S
enabled, we expect the success rate to increase over the
first two repetitions and then stay high (>90%).

(E9): [exp-bhi-dis-s] [5 human-minutes + 5 compute-
minutes]: Experiment to determine how BHI_DIS_S is
implemented on recent Intel processors.



Execution: Please follow the instructions located at
experiments/exp-bhi-dis-s/README.md
Results: We expect a low number of mispredictions
when there is no mitigation active (<10%) and a high
number of mispredictions when BHI_DIS_S is active.

(E10): [exp-end2end] [5 human-minutes + 10 compute-
minutes]: End-to-end attack against Ubuntu 24.04 kernel
version 6.8.0-47-generic on an Intel Raptor Lake proces-
sor (C3).
Execution: Please follow the instructions located at
experiments/exp-end2end/README.md
Results: We expect the attack to work successfully in
a high number of cases (>90%) with a leak rate of over
5KiB/s in the median.

(E11): [exp-benchmark-mitigations] [5 human-minutes + 24
compute-hours]: Measure mitigation performance over-
head.
Execution: Please use instructions at experiments/
exp-benchmark-mitigations/README.md
Results: We observed a slowdown for all mitigations.
The microcode performs best, IPRED_DIS_S second and
retpoline third.

A.5 Notes on Reusability
Our experiments were developed to work well on the evalu-
ated x86 processors but the methodologies can be applied
to other processors and microarchitectures as well. Fur-
thermore, the kernel modules and library code provided in
experiments/uarch-research-fw are useful to hardware
reverse engineering in general.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


