
USENIX Security ’25 Artifact Appendix: JBShield: Defending Large
Language Models from Jailbreak Attacks through Activated Concept

Analysis and Manipulation

Shenyi Zhang1, Yuchen Zhai1, Keyan Guo2, Hongxin Hu2, Shengnan Guo1, Zheng Fang1,
Lingchen Zhao1, Chao Shen3, Cong Wang4, and Qian Wang1

1 Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University,

2 University at Buffalo, 3 Xi’an Jiaotong University, 4 City University of Hong Kong

A Artifact Appendix

A.1 Abstract

This artifact supports the evaluation of JBShield, a comprehen-
sive jailbreak defense framework for large language models
(LLMs). JBShield leverages the Linear Representation Hy-
pothesis (LRH) to investigate the mechanisms underlying
jailbreak attacks, defining and analyzing high-level toxic and
jailbreak concepts encoded in LLM hidden representations.
By identifying and manipulating these concepts, JBShield
effectively detects and mitigates jailbreak prompts, ensuring
safer outputs. This artifact includes: (1) datasets used for eval-
uation, encompassing nine types of jailbreak prompts across
five target LLMs, benign prompts from the Alpaca dataset,
and harmful prompts from AdvBench and Hex-PHI; (2) im-
plementations for extracting concept-related interpretable to-
kens; and (3) testing scripts for evaluating JBShield-D (detec-
tion) and JBShield-M (mitigation) across five LLMs. These
resources facilitate reproducibility and provide a comprehen-
sive assessment of JBShield’s effectiveness in reducing attack
success rates and enhancing LLM safety.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our research focuses on defending jailbreak attacks on large
language models (LLMs). As such, the provided dataset con-
tains examples of harmful language, and the evaluation pro-
cess may involve executing jailbreak attacks that could lead
the model to generate ethically or morally questionable con-
tent. While these outputs are used strictly for research and de-
fense evaluation purposes, reader discretion is recommended.
Evaluators should take necessary precautions when review-
ing the dataset and generated outputs to ensure responsible
handling of potentially harmful content.

A.2.2 How to access

The artifact is publicly available and can be accessed
at the newest version under the Zenodo URL https://
zenodo.org/records/14732884 and GitHub repo https:
//github.com/NISPLab/JBShield. This repository con-
tains all necessary components for evaluating JBShield, in-
cluding the datasets, code for extracting concept-related to-
kens, and implementations of JBShield-D (detection) and
JBShield-M (mitigation) for testing across five target LLMs.

A.2.3 Hardware dependencies

Since our research focuses on evaluating large language mod-
els (LLMs), the primary hardware requirement is a GPU with
sufficient memory to handle inference and jailbreak detection
tasks. The minimum hardware requirement is two GPUs with
at least 24GB VRAM each (e.g., RTX 3090 or RTX 4090).
For optimal performance, we recommend a setup with 4 RTX
4090 GPUs (24GB VRAM each) or 1 A100 GPUs (80GB
VRAM each). These configurations ensure efficient execution
of JBShield’s detection and mitigation components across
multiple LLMs.

A.2.4 Software dependencies

We recommend evaluating our artifact on a Linux-based
system. Our implementation has been tested and verified
on Ubuntu 20.04.2 with Linux kernel versions 5.15.0-130-
generic and 5.15.0-125-generic. The artifact requires Python
for execution, along with several third-party libraries. We sug-
gest following the official PyTorch installation guide1 to set
up PyTorch, while other dependencies can be installed using
Pypi. Additionally, our evaluation utilizes five target LLMs
and one evaluation LLM, all of which can be downloaded
from HuggingFace. For further details, please refer to the
README file included in the artifact.

1https://pytorch.org/get-started/locally

https://zenodo.org/records/14732884
https://zenodo.org/records/14732884
https://github.com/NISPLab/JBShield
https://github.com/NISPLab/JBShield
https://pytorch.org/get-started/locally


A.2.5 Benchmarks

The dataset required for the experiments reported in our
paper is fully included in the artifact (in ./data). It com-
prises harmful prompts (./data/harm f ul{}.csv), benign
prompts (./data/harmless{}.csv) and jailbreak prompts
(in ./data/ jailbreak). Harmful prompts sourced from Ad-
vBench and HEx-PHI datasets. Benign prompts sampled from
the Alpaca dataset. Jailbreak prompts generated using nine dif-
ferent jailbreak attack methods, targeting five different LLMs.
All jailbreak prompts were generated by our own. The dataset
is structured and readily accessible within the artifact for
ease of use in reproducing our experimental results. Note that
our mitigation evaluation is conducted using 50 samples per
jailbreak attack. Specifically, for transfer-based attacks (IJP,
Puzzler, Zulu, and Base64) that do not directly exploit target
LLM information, we randomly select 50 corresponding jail-
break prompts from our dataset to assess the attack success
rate (ASR). For the other jailbreak methods, we treat the de-
fended model as a new target LLM, generate 50 new jailbreak
prompts, and compute the ASR accordingly. The evaluation
data for jailbreak mitigation is provided in ./data/mitigation,
following the same file structure as ./data/ jailbreak.

A.3 Set-up
A.3.1 Installation

The code for JBShield runs with Python 3 and requires Py-
torch. We recommend using Anaconda or miniconda for
python. Our code has been tested with python=3.12.8 and
torch=2.5.1 on linux. First, install conda2 (if not already in-
stalled), create a conda environment and activate it. Follow
the official PyTorch installation guide to install Pytorch and
pip install the other packages. Than download and set up all
models required. For further details on installation and con-
figuration, please refer to the README file included in the
artifact.

A.3.2 Basic Test

To verify that the installation is successful and all required
software components are functioning correctly, Run a sample
Concept Extraction test in shell by

python interpret.py –model mistral

Expected output is as

[nltk_data] Downloading package words to <path>...
[nltk_data] Package words is already up-to-date!
Number of harmful prompts: 850

2https://docs.anaconda.com/anaconda/install

Number of harmless prompts: 850
Number of gcg prompts: 850
Number of autodan prompts: 850
Number of saa prompts: 850
Number of drattack prompts: 520
Number of pair prompts: 850
Number of puzzler prompts: 50
Number of ijp prompts: 850
Number of base64 prompts: 850
Number of zulu prompts: 850
Number of harmful prompts: 850
Number of harmless prompts: 850
mistral Interpretation done.

A.4 Evaluation workflow

A.4.1 Major Claims

The major claims made in your paper are enumerated as fol-
lows:
(C1): Our method for extracting concept-related inter-

pretable tokens enables a deeper understanding of jail-
break mechanisms by identifying toxic and jailbreak con-
cepts encoded in LLM representations. This is demon-
strated through in Section 3 (Activated Concept Analy-
sis), with supporting results shown in Table 2 and Ap-
pendix A.

(C2): JBShield-D accurately detects jailbreak prompts by
analyzing the activation of both toxic and jailbreak con-
cepts. The effectiveness of JBShield-D is validated by
the experiments in Section 5.4 (Jailbreak Detection),
where it achieves an average detection accuracy of 0.95
across five LLMs. The results are presented in Table 4.

(C3): JBShield-M successfully mitigates jailbreak attacks by
adjusting the hidden representations of LLMs, enhanc-
ing toxic concepts while suppressing jailbreak concepts.
The effectiveness of JBShield-M is evaluated in Section
5.5 (Jailbreak Mitigation), demonstrating a reduction in
jailbreak attack success rates from 61% to 2% across
five LLMs. The results are detailed in Table 7.

A.4.2 Experiments

To evaluate JBShield and validate our key claims, we conduct
the following experiments. Each experiment is associated with
one of the major claims listed in Section A.4.1 and provides
details on the execution steps, expected runtime, and required
resources.
(E1): [Concept-related Interpretable Token Extraction] [~1

compute-hour]: validate that JBShield’s extraction of
concept-related interpretable tokens can help in under-
standing jailbreak mechanisms and identifying toxic and
jailbreak concepts.

https://docs.anaconda.com/anaconda/install


How to: Extract concept-related tokens from five target
LLMs using JBShield’s interpretation module.
Preparation: Ensure that the environment and models
is set up following the installation instructions in Sec-
tion A.3. Verify that calibration and test datasets are
properly structured in ./data/ jailbreak as mentioned in
README.
Execution: Run the interpretation script:

chmod +x ./interpret.sh
./interpret.sh

Results: The extracted tokens for each model are saved
in ./interpret_results/{model_name}.txt. These re-
sults should align with the findings presented in Table 2
and Appendix A of the paper.

(E2): [Jailbreak Detection Performance of JBShield-D] [~4
compute-hour]: evaluate JBShield-D’s jailbreak detec-
tion performance across five LLMs and verifies that the
detection achieves high accuracy and F1-Score.
How to: Run the jailbreak detection module on the five
target models and evaluate detection accuracy and F1-
Score.
Preparation: Ensure that the environment and models
is set up following the installation instructions in Sec-
tion A.3. Verify that calibration and test datasets are
properly structured in ./data/ jailbreak as mentioned in
README.
Execution: Run the detection script:

chmod +x ./evaluate_detection.sh
./evaluate_detection.sh

Results: The detection performance logs are saved in
./logs/JBShield −D_{model_name}.log. Expected re-
sults should match Table 4 in the paper.

(E3): [Jailbreak Mitigation Performance of JBShield-M] [~2
compute-hour]: evaluates JBShield-M’s ability to miti-
gate jailbreak attacks and reduce the attack success rate.
How to: Apply JBShield-M to the five target models
and measure the attack success rate.
Preparation: Ensure the detection module is function-
ing correctly by verifying results from (E2).
Execution: Run the mitigation script:

chmod +x ./evaluate_mitigation.sh
./evaluate_mitigation.sh

Results: The mitigation results are saved in
/logs/JBShield-M.log. Expected results should
align with Table 7 in the paper, showing an attack
success rate reduction from 61% to 2%.

A.5 Notes on Reusability
Please note that the experimental results presented in this arti-
fact may exhibit some variations due to differences in testing
environments, the randomness in calibration set selection, and
dataset size discrepancies across different jailbreak methods
(DrAttack and Puzzler contain fewer samples compared to
others). Despite these variations, the overall trends and effec-
tiveness of JBShield remain stable, as demonstrated by the
extensive evaluations conducted in our study.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


