
USENIX Security ’25 Artifact Appendix:
Efficient Ranking, Order Statistics, and Sorting under CKKS

Federico Mazzone
University of Twente

Maarten Everts
University of Twente

Linksight

Florian Hahn
University of Twente

Andreas Peter
Carl von Ossietzky

Universität Oldenburg

A Artifact Appendix

A.1 Abstract
The artifact consists of the complete codebase supporting
our paper, which introduces a novel approach to perform-
ing ranking, order statistics, and sorting under CKKS, a fully
homomorphic encryption scheme. Specifically, the artifact
includes a C++ implementation of the four functionalities
discussed in the paper: ranking, argmin, median, and sorting,
all built on top of the OpenFHE library for CKKS.

This implementation was designed to benchmark the run-
time of these functionalities, the primary empirical result of
our paper, across vectors of increasing length in both single-
and multi-threaded settings.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We do not identify any security risks associated with installing
or using our artifact.

A.2.2 How to access

We have made our artifact available on multiple platforms:

• As permanent storage on Zenodo:
https://doi.org/10.5281/zenodo.14673904

• As working repository on Github:
https://github.com/FedericoMazzone/openfhe
-statistics

• As docker container on Docker Hub:
https://hub.docker.com/r/mazzonef/openfhe-s
tatistics

A.2.3 Hardware dependencies

No specific hardware is required, as our library runs exclu-
sively on CPU. OpenFHE and CKKS require significant
RAM, particularly for larger experiments (see Table 2 in
our paper). In the largest experiment (sorting with 16,384
elements), memory consumption may reach up to 230 GB.

To replicate our performance results, we used a machine
equipped with an Intel Xeon Platinum 8358 processor running
at 2.60 GHz, featuring 32 cores (64 threads) and 512 GB of
RAM.

A.2.4 Software dependencies

Our implementation relies on the OpenFHE library, available
at https://github.com/openfheorg/openfhe-develop
ment. We specifically use version 1.1.2, which is included in
our repository to avoid compatibility issues.

Building and running our implementation requires a C++
compiler and CMake. We recommend using GCC v10 or
Clang 11 on Linux for best compatibility.

We have tested our repository exclusively on Linux Ubuntu.
While it should theoretically compile and function on Mi-
crosoft Windows, we do not guarantee compatibility.

A.2.5 Benchmarks

We use synthetic data points generated in the range [0,1]
with a precision of two decimal places. The exact dataset is
available in the file data/points1d.csv.

A.2.6 Benchmarks

We use synthetic data points generated in the range [0,1]
with a precision of two decimal places. The exact dataset is
available in the file data/points1d.csv.

A.3 Set-up
A.3.1 Installation

Unless using the Docker container, both the OpenFHE library
and our library must be compiled. Installation steps are de-
tailed in the README file, but a summary is provided below:

1. Install prerequisites:

(a) sudo apt-get install build-essential

(b) sudo apt-get install cmake

2. Install OpenFHE:

https://doi.org/10.5281/zenodo.14673904
https://github.com/FedericoMazzone/openfhe-statistics
https://github.com/FedericoMazzone/openfhe-statistics
https://hub.docker.com/r/mazzonef/openfhe-statistics
https://hub.docker.com/r/mazzonef/openfhe-statistics
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development


(a) cd openfhe-development-1.1.2

(b) mkdir build

(c) cd build

(d) cmake ..

(e) make -j

(f) sudo make install

(g) cd ../..

3. Install our library:

(a) mkdir build

(b) cd build

(c) cmake ..

(d) make -j

(e) cd ..

If you do not have sudo access in your machine, specify a
different installation path for OpenFHE. See more about this
in the README file.

A.3.2 Basic Test

To run a basic test, execute ./build/demo. This runs a
demonstration of all four functionalities on a fixed vector.
The expected console output includes initialization of the
CKKS cryptosystem, followed by the execution of ranking,
argmin, median, and sorting in sequence.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our four functionalities (ranking, argmin, median, and
sorting) exhibit asymptotic quadratic runtime, achieving
the runtimes reported in Figure 6 and memory consump-
tion reported in Table 2 of the paper. This is validated by
the experiment (E1) described in Section 6 of the paper.

A.4.2 Experiments

(E1): Main experiment, 1 human-minute + 717 compute-
hour + 230GB memory
Preparation: Compile and install the library.
Execution: Run the command sh ./benchmark.sh
<algorithm>, where algorithm is one of the follow-
ing: ranking, ranking-tie, minimum, median, sorting. The
script will automatically execute tests on vectors of in-
creasing length (from 8 to 16,384) in both single- and
multi-threaded settings.
Results: Runtime and memory consumption results are
stored in the CSV file benchmark.out (one row per
experiment). On a comparable machine, performance
metrics (runtime and memory) should be similar to those

reported in the paper. Note that running the Docker ver-
sion may introduce runtime overhead, particularly for
short vectors.

A.5 Notes on Reusability
The parameters of our tests are set to work with data with
two decimal digits precision. In case the input data needs
to be more or less precise, the comparison approximation
parameters need to be adjusted accordingly. See more about
this in the README file.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


