
USENIX Security ’25 Artifact Appendix: Dumbo-MPC: Efficient Fully
Asynchronous MPC with Optimal Resilience

Yuan Su
Xi’an Jiatong University

Yuan Lu
Institute of Software

Chinese Academy of Sciences

Jiliang Li
Xi’an Jiatong University

Yuyi Wang
CRRC Zhuzhou Institute

Chengyi Dong
Xi’an Jiatong University

Qiang Tang
The University of Sydeny

A Artifact Appendix

This repository contains the artifact for the USENIX 2025 sub-
mission “Dumbo-MPC: Efficient Fully Asynchronous MPC
with Optimal Resilience”.

A.1 Abstract
Fully asynchronous multi-party computation (MPC) has su-
perior robustness in realizing privacy and guaranteed output
delivery (G.O.D.) against asynchronous adversaries that can
arbitrarily delay communications. We design a concretely
efficient fully asynchronous MPC—Dumbo-MPC with en-
tire G.O.D. and optimal resilience against t < n/3 corruptions
(where n is the total number of parties). The codebase includes
the implementation for Dumbo-MPC.

Our artifact is built with Ubuntu 20.04 LTS, and can be run
on a single machine with multi-threaded or multi-processes
emulation, or in a distributed setting consisting of multiple
amazon-web service (AWS) virtual machines. There are two
important parameter choices of our artifact: (i) num_node:
number of nodes in the MPC protocol, (ii) batchsize: the
number of secrets to be shared.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no concerns when running this artifact locally.
Please note that executing experiments on your AWS infras-
tructure involves the creation of multiple EC2 instances, re-
sulting in associated costs. Please manually check that any
created machines are terminated afterward.

A.2.2 How to access

All of our files are publicly accessible and can be downloaded
from: https://github.com/dcy456/Dumbo-MPC, which is
also at the permanent Zenodo repository https://zenodo.
org/records/15123146.

A.2.3 Hardware dependencies

Our code can be executed at the local machine installing
Ubuntu 20.04 LTS, or among a few distributed AWS instances.
For distributed evaluations, EC2 instances of type c6a.8xlarge
with 32 vCPUs and 64 GB memory are recommended for
reproducing the evaluation results reported in the paper.

A.2.4 Software dependencies

The following dependencies are required:

• Operating system: Ubuntu 20.04 LTS.

• System dependencies: make bison flex libgmp-dev
libmpc-dev libntl-dev libflint-dev python3
python3-dev python3-pip libssl-dev wget git
build-essential curl tmux. We require specific
versions of programming languages: Python 3.8.x, Rust
1.86.0-nightly and Go 1.18.

• Python dependencies: cffi Cython gmpy2 pyzmq
pycryptodome pyyaml psutil reedsolo numpy
pytest zfec.

• External libraries: PBC (Pairing-Based Cryptography)
library and Charm library.

A.3 Set-up

A.3.1 Installation

Setup at local machine: To locally run Dumbo-MPC, a user
needs to install all dependencies listed in README.md file.
Please follow the README.md file in the repository to install
the necessary dependencies step by step.

Setup AWS machines: Here are the steps to set up the AWS
machines for distributed tests:1

1The AWS setup is for evaluating reproducibility and can be skipped for
availability and functionality evaluations.

https://github.com/dcy456/Dumbo-MPC
https://zenodo.org/records/15123146
https://zenodo.org/records/15123146
https://www.python.org
https://sh.rustup.rs
https://sh.rustup.rs
https://go.dev/dl
https://crypto.stanford.edu/pbc
https://crypto.stanford.edu/pbc
https://github.com/JHUISI/charm


1. Create your AWS credentials: Setup your AWS creden-
tials to enable programmatic access to your account from
your local machine. These credentials will authorize your
machine to create, delete, and edit instances on your
AWS account programmatically. First of all, find your
access key id and secret access key. Then, create a file
“ /.aws/credentials” with the following content:

[default]

aws_access_key_id = YOUR_ACCESS_KEY_ID

aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

2. Add your SSH publlic key to your AWS account: You
must now add your SSH public key to your AWS ac-
count. This operation is manual (AWS exposes little
APIs to manipulate keys) and needs to be repeated for
each AWS region that you plan to use. Upon importing
your key, AWS requires you to choose a “name” for your
key; ensure you set the same name on all AWS regions.
This SSH key will be used by the python scripts to exe-
cute commands and upload/download files to your AWS
instances. If you don’t have an SSH key, you can create
one using ssh-keygen: ssh-keygen -f /.ssh/aws.

3. Deploying Dumbo-MPC on AWS: Launch an instance
on AWS (with Ubuntu 20.04 LTS). If you are not familiar
with AWS, you can visit Get started with Amazon EC2
Linux instances to get some help. To connect to the
launched instance, use SSH:

ssh -i your_ssh_key_path

ubuntu@public_ip_of_instance

Then, upload codes of Dumbo-MPC into instance:

scp -i your_ssh_key_path -r Dumbo-MPC_code_path

ubuntu@public_ip_of_instance:~/

or clone Dumbo-MPC project:

git clone https://github.com/dcy456/Dumbo-MPC.git

Finally, you should install dependencies according to
README.md, and create an image (e.g., store the image
with name your-image-id) for this instance. If you are
not familiar with AWS, you can visit Create an AMI
from an Amazon EC2 Instance to get some help.

A.4 Evaluation Workflow

A.4.1 Major claims (for functionalities)

(C1): The AsyRanTriGen protocol (i.e. the pessimistic of-
fline phase of Dumbo-MPC) is implemented, and can
produce Shamir-style multiplication triples over the field
of curve BLS12-381.

(C2): The entire offline phase of Dumbo-MPC is imple-
mented, beginning with the execution of a fast path (i.e.

the OptRanTriGen protocol). If the fast path fails, a fall-
back algorithm is triggered. Finally, AsyRanTriGen pro-
tocol (pessimistic path) will be executed to restore the
robust generation of multiplication triples. All multi-
plication triples (generated by either OptRanTriGen or
AsyRanTriGen) are of Shamir-style and over the field of
curve BLS12-381.

(C3): The state-of-the-art asynchronous triple generation pro-
tocol GS23 is also implemented, and its implementation
can generate multiplication triples over the field of curve
secp256k1.

(C4): The multiplication triples generated by the offline
phase of Dumbo-MPC (either the fast path or the pes-
simistic path) can be used by the online evaluations of
hbMPC, such as shuffling via a butterfly network.

A.4.2 Experiments (for evaluating functionalities)

The approach creates multiple processes within a single (lo-
cal) machine. Each process corresponds to one node in our
protocols, and these processes communicate using an inter-
process communication (ipc) channel.

(E1): A quick start to locally run AsyRanTriGen protocol to
generate multiplication triples can be:

1. cd /path/to/Dumbo-MPC.

2. ./run_local_network_test.sh asy-triple
<num_node> <batchsize>. For this test, our artifact
supports several fixed numbers of nodes, including the
choices of 4, 10, 22 and 31, and arbitrary batch size. For
example, running ./run_local_network_test.sh
asy_triple 4 200 will generate 200 multipli-
cation triples. The experiment logs are shown at
./dumbo-mpc/AsyRanTriGen/log/ with recording
the execution latency, and the generated triples are at
./dumbo-mpc/AsyRanTriGen/triples/. 2

(E2): Recall that in the offline phase of Dumbo-MPC, an Op-
tRanTriGen protocol (fast path) is firstly executed to optimisti-
cally generate multiplication triples, and if a fast-path failure
occurs, a fallback happens to switch into the AsyRanTriGen
protocol. So we provide the following quick start to locally
run the offline protocols of Dumbo-MPC, by simulating a
fast-path failure at 10-th round to trigger fallback.

1. cd /path/to/Dumbo-MPC.

2. ./run_local_network_test.sh dumbo-mpc
<num_node> <batchsize>. For this test, our
artifact supports 4, 10, 22 and 31 nodes, and
arbitrary batchsize. For example, running
./run_local_network_test.sh dumbo_mpc 4

2In all subsequent experiments, the latency associated with saving the
generated multiplication triples to a file is not included.

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-creds
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-creds
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://www.ssh.com/ssh/keygen/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-create-ami-from-instance.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-create-ami-from-instance.html


200 will generate 200∗9+200 = 2000 triples in total,
where all nodes agree on the 9-th round of fast path
and each round outputs 200 triples, and the pessimistic
path outputs another 200 triples. The experiment
logs are shown at ./dumbo-mpc/dualmode/log/,
providing the latency for each protocol. The generated
triples from both paths are stored as files under the
directory ./dumbo-mpc/dualmode/opt-triples/
and ./dumbo-mpc/dualmode/asy-triples/.

(E3): A quick start to locally run GS23 protocol can be:

1. cd /path/to/Dumbo-MPC/GS23.

2. ./scripts/local_test.sh
scripts/run-beaver.py <num_node>
<batchsize>. For this test, our artifact supports
4, 10, 22 and 31 nodes, and batchsize ≤ 5000.
For example, running ./scripts/local_test.sh
scripts/run_beaver.py 4 200 will generate 100
multiplication triples. The experiment logs are stored at
Dumbo-MPC/GS23/log/, providing the execution time.

(E4): A quick start to locally run an online task (using the
online protocol inherited from hbMPC), in aid of triples gen-
erated from Dumbo-MPC’s offline phase, is as follows:

1. cd Dumbo-MPC/dumbo-mpc/online.

2. ./preprocessing.sh <num_node> <num_input>.
Both OptRanTriGen and AsyRanTriGen protocols are
used to prepare triples and random shares, where random
shares are served as inputs. For example, shuffling 64
inputs by 4 nodes requires to generate 4608 triple, which
can be completed by ./proprecessing.sh 4 64.
Besides, one-minus-ones shares are also required to gen-
erate for online shuffle. All preprocessed data are stored
at Dumbo-MPC/dumbo-mpc/online/sharedata_test/.

3. Run ./run_shuffle.sh 4 64 for 4 nodes to shuf-
fle 64 inputs. The experiment logs can be found at
Dumbo-MPC/dumbo-mpc/online/log/.

A.5 Evaluation at Distributed AWS Instances
The above subsection outlines the approach used to eval-
uate the functionalities of our implementation. This sub-
section provides detailed guidance on reproducing the
results reported in our paper. To distributedly run ex-
periments across multiple AWS instances, first start an
AWS instance (as the experiments’ manager node) from
the previously created AMI and modify the awsinit.sh
in the directory remote/ as follows: replace -image-id
with your-image-id; for -instance-type, we recom-
mend c6a.8xlarge or better; replace -key-name with
your-ssh-key-name; -security-group-ids you can
delete this option if you are not familiar with it.

(AWS-E1) [Choices of batchsize] (Figure 6 and Figure 7):
In this experiment, we test the relationship between through-
put and batch size in the OptRanTriGen and AsyRanTri-
Gen protocols. First, launch instances via ./awsinit.sh
<num_node> where num_node can be 4, 10, 22, 31. Then, fol-
low the next steps to evaluate OptRanTriGen and AsyRanTri-
Gen protocols with different batch sizes.

• For OptRanTriGen, do the following steps:

1. cd remote/OptRanTriGen_scripts.
2. Configure ./changeconfig.sh by IP addresses

of created AWS instances.
3. Repeat to the execution of OptRanTriGen

by varying <batchsize> among 1000, 5000,
10000 and 12000: ./launch_optrantrigen.sh
<num_node> <batchsize>.

4. Stop execution by ./terminate.sh, after the out-
puts are returned. Then, the experiment logs of
all participating nodes can be downloaded by run-
ning ./scplog.sh <num_node> <batchsize>.
The manger node will store the experiment logs
at ./log_<num_node>_8x/test_<batchsize>/.
These logs provide each node’s execution time and
communication cost in OptRanTriGen.

• For AsyRanTriGen, its test is similar to that of Op-
tRanTriGen, except a couple of differences: (i) in
Step 1, enter the directory AsyRanTriGen_scripts in-
stead of OptRanTriGen_scripts; (ii) in Step 3, run
the script ./launch_asyrantrigen.sh <num_node>
<batchsize> instead.

(AWS-E2) [Triple throughput for LAN and WAN settings]
(Figure 8 and Figure 9): This experiment evaluates the triple
throughput with a fixed batch size of 5000 for four different
offline protocols in both LAN and WAN settings, including
OptRanTriGen and AsyRanTriGen from Dumbo-MPC, as
well as GS23 and hbMPC.

First, we launch a few AWS instances via ./awsinit.sh
<num_node> where num_node can be 4, 10, 22, 31. The test-
ing processes in the LAN and WAN settings are almost same,
except that in the WAN setting, we first run the bash script
set_latency.sh in the remote directory, which uses Linux
TC tool to restrict the upload bandwidth of each instance to
500 Mbps and set the network’s RTT to 150 ms.

Then we evaluate four offline protocols with a fixed batch
size of 5000 as follows.

1. cd remote/<AsyRanTriGen_scripts>, where the di-
rectory of scripts <OptRanTriGen_scripts> can be
one of GS23_scripts, GS23_scripts, GS23_scripts,
hbMPC_scripts.

2. Configure ./changeconfig.sh by IP addresses of cre-
ated AWS instances.



3. Launch the specific offline protocol: ./<run_script>
<num_node> 5000. Here the parameter <run_script>
is a bash script from launch_asyrantrigen.sh,
launch_optrantrigen.sh, launch_GS23.sh, and
launch_hbmpc.sh, representing the scripts to launch
OptRanTriGen, AsyRanTriGen, GS23 and hbMPC,
respectively.

4. Stop running by ./terminate.sh, after the execu-
tion finishes. Then, we can read the experiment re-
sults by connecting these instances to view these
logs or running ./scplog.sh <num_node> 5000 to
download these logs. These logs will be stored under
./log_<num_node>_8x/test_5000/ at the manger
node. The experiment logs provide the execution time
and communication costs of each participating node.

(AWS-E3) [Communication cost] (Figure 10): In AWS-E2,
we already evaluated the performance of four offline protocols.
Their communication cost can be found in the test logs.

(AWS-E4) [Performance with fallback (Figure 11)]:
First, launch AWS instances via the script ./awsinit.sh
<num_node> where num_node is set as 4. Then, evaluate three
protocols (Dumbo-MPC, GS23 and hbMPC) with a fixed
batch size of 5000 for num_node=4.

• Run Dumbo-MPC’s offline phase (i.e. OptRanTriGen
with fallback to AsyRanTriGen): The experiment de-
sign is similar to that of E-2. First, the fast-path protocol
(OptRanTriGen) is executed to optimistically generate
multiplication triples, until a malicious node is simulated
at the 10-th round of OptRanTriGen. Following this, all
nodes switch to the pessimistic path through a secure
fallback mechanism, ensuring agreement on the triples
generated during the fast path. Finally, the AsyRanTri-
Gen protocol (pessimistic path) is executed by all nodes.

1. cd Dumbo-MPC_scripts

2. Configure ./changeconfig.sh by IP addresses
of created AWS instances.

3. Launch Dumbo-MPC: ./launch_dumboMPC.sh
4 5000.

4. Terminate Dumbo-MPC and access to the ex-
periment results: Run ./terminate.sh to termi-
nate all instances. Then, we can run the script
./scplog.sh 4 5000 to download the experi-
ment logs from all participating nodes. These logs
will be stored at ./log_4_8x/test_5000/ at the
manger node. The logs provide the execution time
for each step, including every round of the Op-
tRanTriGen protocol, the fallback process, and the
AsyRanTriGen protocol. Besides, the communica-
tion costs of OptRanTriGen and AsyRanTriGen are
separately enumerated, and can be found at logs.

• Run GS23: same as running GS23 for the LAN setting
in AWS-E2.

• Run hbMPC: same as running hbMPC for the LAN
setting in AWS-E2.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation

	Evaluation Workflow
	Major claims (for functionalities)
	Experiments (for evaluating functionalities)

	Evaluation at Distributed AWS Instances
	Version


