
USENIX Security ’25 Artifact Appendix: "SoK: Understanding
zk-SNARKs: The Gap Between Research and Practice"

Junkai Liang1,∗, Daqi Hu1,∗, Pengfei Wu2,∗, Yunbo Yang3, Qingni Shen1,†, Zhonghai Wu1,†

1Peking University, 2Singapore Management University, 3East China Normal University
{ljknjupku, hudaqi0507}@gmail.com, pfwu@smu.edu.sg, yyb9882@gmail.com,

{qingnishen, wuzh}@pku.edu.cn

A Artifact Appendix

A.1 Abstract

As the inherent mathematical complexity has hindered the de-
velopment of zk-SNARK fields, our artifact helps bridge the
gaps between researchers, developers and users. The artifact
consists of three main aspects: 1)sample code. We provide
each sample code with a Docker image that allows users to
conduct preliminary testing of these zkSNARK libraries. 2)tu-
torial. A detailed tutorial explaining the logical construction
in the sample programs. 3)extended documentation (wiki
book). This document outlines the circuit construction for
each library’s frontend, the zk-SNARK proving process in
the backend, relevant APIs for library gadgets, and supported
elliptic curves.

A.2 Description & Requirements

Our artifact contains several Docker virtual images that
help practitioners test the efficiency of the three sample zk-
SNARKs applications. The images can be run on any personal
computer without installing the library.

A.2.1 Security, privacy, and ethical concerns

All evaluated zk-SNARK libraries are open-source and freely
available on GitHub or their respective homepages. As such,
this research does not involve any ethical concerns, as it does
not include activities that could pose harm or risk to individu-
als or organizations.

A.2.2 How to access

Stable URL pointing to the latest version of our artifact:
https://doi.org/10.5281/zenodo.14682405.

Stable URL for the feedback and dynamic changes: https:
//github.com/zk-lover/zk-sok.

A.2.3 Hardware dependencies

The codes in our artifact can be run on any general-purpose
computer. The evaluation requires no special hardware fea-
tures.

A.2.4 Software dependencies

We test our code on Ubuntu-20.04 with docker-26.1.4. The
evaluation does not require specific OS or other software
dependencies.

A.2.5 Benchmarks

None.

A.3 Set-up

We have packaged all the environments required for the ex-
periments into Docker, so you don’t need to prepare any envi-
ronment except installing Docker.

A.3.1 Installation

Run the following instructions on any terminal in Linux oper-
ating system.

1. sudo apt update
2. sudo apt upgrade
3. apt-get install ca-certificates curl gnupg
lsb-release
4. curl -fsSL http://mirrors.aliyun.com
/docker-ce/linux/ubuntu/gpg
5. sudo apt-key add -
6. sudo add-apt-repository "deb [arch=amd64]
http://mirrors.aliyun.com/docker-ce/linux
/ubuntu $(lsb_release -cs) stable"
7. apt-get install docker-ce docker-ce-cli
containerd.io

https://doi.org/10.5281/zenodo.14682405
https://github.com/zk-lover/zk-sok
https://github.com/zk-lover/zk-sok


A.3.2 Basic Test

Taking Arkworks as an example, you can enter the /arkwork-
slab directory and execute the following command to start
Docker.

docker build -t arkworks .
docker run -it –rm arkworks

Then you can run our sample programs. For example:

cargo run –bin cubic_expression

A successful run will display output similar to the follow-
ing:

Number of constraints: 3
Uncompressed pk size: 3984 bytes
Uncompressed vk size: 872 bytes
Total uncompressed size (pk + vk): 4856 bytes
Number of constraints: 3
Uncompressed proof size: 384 bytes
Proof is valid: true
Prove time: 74.518 milliseconds
Verify time: 51.528 milliseconds
You can use the following command to test the other
two sample programs.
cargo run –bin rangeproof
cargo run –bin sha256

You can easily test the other eight libraries we evaluated
using similar commands. We have packaged the code and
environment into Docker, and you will see similar output.

A.4 Evaluation workflow
A.4.1 Major Claims

The main claim in our paper related to the artifact is in Section
5.4.3, and we explain the relation in detail as follows:

Our zk-sok open source repository evaluated a total of 9 li-
braries and implemented our three sample programs using the
ZKP schemes they support, Cubic expression, Range proof
and sha256. For different application scenarios, we recom-
mend the best scheme along with its implementation. Groth16
is the best practice for applications that need a fast prover, a
small proof size, and can tolerate a trust setup. gnark imple-
ments Groth16 more efficiently in Go, while snarkjs provides
an implementation of Groth16 in Rust with more compati-
bility (using a DSL compiler). Plonk is the best practice for
applications that need a transparent setup and are not sensi-
tive to the slight increase in the proof size. For the widely
used range proof, we recommend dalek, which is designed
for range proof, specifically. This is proven by the experiment

(E1-E9) described in [5.4 Experimental Evaluation] whose
results are illustrated/reported in [Table 4].

A.4.2 Experiments

Our evaluation consists of 9 evaluations of the libraries. The
instructions and descriptions are listed as follows:
(E1): [gnark] [30 human-minutes + 5 compute-minutes

+1GB disk]:
Preparation: No need to configure any environment
except Docker
Execution: Navigate to the /gnark directory:

cd /gnark
docker build -t gnark .
docker run -it –rm gnark

Navigate to the directory of the program you would like
to run. Our examples are in the directories under /root.
Run the following code to execute the examples.

cd testCubicequation_groth16
go build -o testCubicequation_groth16
./testCubicequation_groth16

(E2): [libsnark] [30 human-minutes + 5 compute-minutes ]:
Preparation: Before building docker, execute:

git submodule update –init –recursive libsnark-
lab/deps/libsnark

Execution: Navigate to the /libsnarklab directory:

cd /libsnarklab
Run docker:
docker build -t libsnark .
docker run -it –rm libsnark

Navigate to the directory of the program you would like
to run. Our examples are at /app/src. Before you execute
the sample program, you need run the following code to
compile it.

mkdir build
cd build
cmake ..
make

Then you can run the following code to execute the
sample program.



cd app/build/src
./cubic_expression
./range_proof
./sha256

(E3): [libiop] [30 human-minutes + 5 compute-minutes ]:
Preparation: Before building docker, execute:

git submodule update –init –recursive libio-
plab/deps/libiop

Execution: Navigate to the /libioplab directory:

cd /libioplab
Run docker:
docker build -t libiop .
docker run -it –rm libiop

Navigate to the directory of the program you would like
to run. Our examples are at /app/src. Before you execute
the sample program, you need to run the following code
to compile it.

mkdir build
cd build
cmake ..
make

Then you can run the following code to execute the
sample program.

cd app/build/src
./cubic_aurora
./cubic_ligero
./cubic_fractal
./rangeproof_aurora
./rangeproof_ligero
./rangeproof_fractal
./sha256_aurora
./sha256_ligero
./sha256_fractal

(E4): [snarkjs] [30 human-minutes + 5 compute-minutes +
10 compilation-hours]:
Preparation: No need to configure any environment
except Docker

Execution: Navigate to the /snarkjs directory:

cd /snarkjs
Run docker:
docker build -t snarkjs .
docker run -it –rm snarkjs

Navigate to the directory of the program you would
like to run. Our examples are at /app. Enter a directory,
you’ll find 4 files: a .circom file, which is the circuit
file and input.json file, which is the input file a start.sh
file, which contains the full steps to run the program. a
quick_start.sh file, which can be used when you have a
final.ptau file. The final.ptau file contains the public pa-
rameters required by the circuit and is used to ensure the
credibility of the circuit. It is a necessary file in the proof
process. Snarkjs provides a command to generate this
file. As the maximum constraints of the circuit increase,
the file generation time is slower. Snarkjs officially pro-
vides final.ptau files ranging from 256 constraints to 256
mega constraints. You can choose to generate it your-
self or download it. tips: To test sha256 requires a big
ptau file, if you generate it yourself, it will take a long
time. You can simply run the ’start.sh’ to execute the
examples.

./start.sh

Or when you have a final.ptau file, you can run the
’quick_start.sh’ to execute the examples.

(E5): [halo2] [30 human-minutes + 5 compute-minutes ]:
Preparation: No need to configure any environment
except Docker
Execution: Navigate to the /halo2 directory:

cd /halo2
Run docker:
docker build -t halo2 .
docker run -it –rm halo2

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run –bin cubic_expression
cargo run –bin range_proof
cargo run –bin sha256

(E6): [delak] [30 human-minutes + 5 compute-minutes ]:
Preparation: No need to configure any environment
except Docker.
Execution: Navigate to the /delak directory:



cd /delak
Run docker:
docker build -t delak .
docker run -it –rm delak

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run –bin rangeproof

(E7): [arkworks] [30 human-minutes + 5 compute-minutes
]:
Preparation: No need to configure any environment
except Docker

Execution: Navigate to the /arkworkslab directory:

cd /arkworkslab
Run docker:
docker build -t arkworks .
docker run -it –rm arkworks

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run –bin cubic_expression
cargo run –bin rangeproof
cargo run –bin sha256

(E8): [spartan] [30 human-minutes + 5 compute-minutes ]:
Preparation: No need to configure any environment
except Docker.
Execution: Navigate to the /spartan directory:

cd /spartan
Run docker:
docker build -t spartan .
docker run -it –rm spartans

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run –bin cubic_expression
cargo run –bin rangeproof
cargo run –bin sha256

(E9): [plonky2] [30 human-minutes + 5 compute-minutes ]:

Preparation: No need to configure any environment
except Docker.
Execution: If you want to run Cubic expression and
Range proofs, navigate to the /plonky2 directory:

cd /plonky2
Run docker:
docker build -t plonky2 .
docker run -it –rm plonky2

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run –bin cubic_expression
cargo run –bin range_proof
cargo run –bin sha256

Since plonky2 does not provide gadgets related to sha256
circuit construction, we seek an open source implemen-
tation of the forked plonky2 library and place it in our
plonky2sha256 directory. If you want to run Sha256,
navigate to the /plonky2sha256 directory:

cd /plonky2sha256

Navigate to the directory of the program you would like
to run. Our examples are at /root/src. Run the following
code to execute the examples.

cargo run

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


