
USENIX Security ’25 Artifact Appendix: CAMP in the Odyssey: Provably
Robust Reinforcement Learning with Certified Radius Maximization

Derui Wang♡,♠, Kristen Moore♡,♠, Diksha Goel♡,♠, Minjune Kim♡,♠, Gang Li♣, Yang Li♣, Robin Doss♣,
Minhui Xue♡,♠, Bo Li♢, Seyit Camtepe♡,♠, and Liming Zhu♡

♡CSIRO’s Data61, Australia
♠Cyber Security Cooperative Research Centre, Australia

♣Deakin University, Australia
♢University of Chicago, USA

A Artifact Appendix

A.1 Abstract
This artifact appendix focuses on two main claims (please
refer to “Contributions” in Section 1 and “Main takeaways”
at the end of Section 5) in our paper:

• CAMP and policy imitation enhance the certified ro-
bustness of DRL agents: We compare CAMP with two
other baseline training methods, namely Gaussian and
NoisyNet. CAMP outperforms these baselines in the trade-
off between certified agent utility (i.e., “Certified Ex-
pected Return”) and certified robustness (i.e., “Certified
Radius”). In particular, significant performance gains are
observed in both classic control and autonomous driving
environments.

• Agents trained by CAMP and policy imitation are more
robust against empirical attacks: CAMP effectively mit-
igates adversarial perturbations in observations, main-
taining a higher average return across diverse attack sce-
narios. The CAMP agents exhibit superior robustness com-
pared to Gaussian agents, with particularly significant im-
provements observed in classic control and autonomous
driving environments.

We have provided the source code and scripts in this artifact
to reproduce the results that support these two claims.

A.2 Description & Requirements
The artifact enables the demonstration and reproduction of
results for both CAMP, Gaussian, and NoisyNet agents in the
Cartpole environment. Since the original code and scripts
were developed and tested on our internal high-performance
computer (HPC) cluster (CSIRO Virga), which restricts access
from external users, we have done our best to ensure the
results can be reproduced on non-HPC devices. We provided

a list of requirements for running our code on a customer PC
to ensure that evaluators can conduct the evaluation.

A.2.1 Security, privacy, and ethical concerns

To the best of our knowledge, there are no security, privacy, or
ethical concerns associated with our artifact. Our code does
not collect data or fingerprints from evaluators. Moreover,
these concerns are not applicable if the evaluator uses their
own hardware and software platform for evaluation.

A.2.2 How to access

The code is available from our GitHub repository
(https://github.com/NeuralSec/camp-robust-rl). Evaluators
can simply clone the repository to their local PC and set
up a virtual environment as instructed. Since training the
DQN can be highly unstable, the quality of agents trained
with different GPUs or in different system environments may
vary. To ensure reproducibility, we set up containers with
NVIDIA RTX-4090 on runpod.io , allowing evaluators
to log in anonymously and run the corresponding experi-
ments. The Zenodo release of our code can be accessed from
https://zenodo.org/records/14729675.

A.2.3 Hardware dependencies

We recommend that evaluators use a PC equipped with a
CUDA-capable GPU. While our code and scripts were de-
veloped and tested on an internal HPC cluster with NVIDIA
H100 GPUs, the code is not memory-intensive. Consumer-
grade GPUs supporting CUDA should handle execution with-
out issues. For reference, training with CAMP and policy imi-
tation on the Cartpole environment typically consumes less
than 1GB VRAM.

https://github.com/NeuralSec/camp-robust-rl
https://zenodo.org/records/14729675
https://zenodo.org/records/14729675


Table 1: Environment for Experiments

Software Detail

Operating system Linux (SUSE Linux Enterprise Server SLE15)
Python version 3.11.4
CUDA version 12.4
cuDNN version 9.1.0

Major libraries

Pytorch 2.5.1
Gymnasium 0.29.1
Highway-env 1.9.1
ale-py 0.8.1
autoattack 0.1
SciPy 1.11.0
Numpy 1.26.4
statsmodels 0.14.2
matplotlib 3.8.4
tensorboard 2.16.2
tqdm 4.66.4
mlconfig 0.1.8

A.2.4 Software dependencies

The code should be executable on various versions of Linux
operating systems. A requirements.txt file is provided
for quick setup of the environment. This file includes a com-
prehensive list of dependencies, rather than just the minimal
required ones, to facilitate the recreation of the virtual envi-
ronment used during our experiments. Table 1 lists the system
environment and major libraries used during our code testing.

A.2.5 Benchmarks

We mainly produce results based on the Gymnasium [3] Cart-
pole environment in this artifact. Specifically, this artifact uses
"Cartpole-v0" from Gymnasium. The Q-network of the

agent is a multi-layer perception (MLP) whose architecture is
described in Table 4 of our paper.

A.3 Set-up
• Clone the repository from GitHub to your local PC or

the provided container.
• A readme.md file included in the repository de-

scribes the commands for environment setup.
• The experiment will create new folders within the cur-

rent directory to store its results. Please ensure that the
directory where you run the experiment has the neces-
sary write permissions to allow the creation of these
folders.

• We provide four shell scripts to help you reproduce the
results.

A.3.1 Installation

The installation steps are described in the readme.md file.
First, navigate to the root directory of the cloned repository
and create a virtual environment using venv . Next,
update pip to the latest version and install dependencies
from requirements.txt . After installation, you can
type deactivate to exit the virtual environment. To
this end, the setup is finished and the code should be

ready for the following evaluation. We have observed
that when installing dependencies on some Ubuntu distri-
butions (tested on WSL2 Ubuntu 24.04.1 LTS), running
pip install -r requirements.txt --no-cache-dir may

result in errors like segmentation fault due to conflicting
dependency versions. If this occurs, rerunning the same
command immediately after the error often resolves the issue.

A.3.2 Basic Test

In the root directory of the cloned repository, execute
bash ae_step1.sh . If the Python version and GPU

information are displayed without errors, the setup is
successful. To monitor training with TensorBoard, open
a new terminal, navigate to the root directory of the
repository with the virtual environment activated, and run
tensorboard --logdir="exp" . This will allow you to

visualize the training progress.

A.4 Evaluation workflow
This artifact includes four shell scripts located in the root
directory, which generate results for two major experiments
designed to verify our two claims. In this evaluation, we will
focus on reproducing results in the Cartpole environment
under the setting of σ = 0.2.

• ae_step1.sh trains agents using CAMP, Gaussian,
and NoisyNet on "Cartpole-v0" with single-frame
observations (i.e., “Cartpole-1” in the paper) and σ =
0.2.

• ae_step2.sh tests the three agents trained by
ae_step1.sh and certifies their robustness. The re-

sults are plotted as a .pdf figure and saved in the
directory ./exp_cert/comparisons/ .

• ae_step3.sh attacks the CAMP and Gaussian agents
trained by ae_step1.sh using projected gradient
(PGD) attack [2] and plots the result in a .pdf figure
in the ./attacks/ folder.

• ae_step4.sh attacks the CAMP and Gaussian agents
trained by ae_step1.sh using Auto PGD (APGD)
attack [1] and plots the result in a .pdf figure in the
./attacks/ folder.

The results from ae_step1.sh and ae_step2.sh
support our first claim, while those from ae_step3.sh
and ae_step4.sh support our second claim.

A.4.1 Major Claims

(C1): CAMP and policy imitation enhance the certified ro-
bustness of DRL agents. This is demonstrated by the
experimental results in Figures 2 and 8 of the paper.

(C2): CAMP and policy imitation effectively improves the ro-
bustness of agents against empirical attacks perturbing



observations. This is demonstrated by the experimental
results in Figures 3 and 4 of the paper.

A.4.2 Experiments

(E1): [Train agents with different methods on Cartpole-1
and certify the robustness of trained agents] [1 human-
minute + 2.5 compute-hour]: Train agents with different
methods and certify their robustness to support (C1).
How to:
Preparation: Complete installation described in Sec-
tion A.3 first.
Execution: 1) In the root directory of the cloned repos-
itory, run bash ae_step1.sh . The script trains
CAMP, Gaussian, and NoisyNet agents in the Cartpole-1
environment with the noise scale σ = 0.2. The trained
agents are saved under the ./exp/ folder. 2) When
finished, run bash ae_step2.sh . This script
loads the trained agents and tests each agent in Cartpole-
1 for 10,000 independent episodes. The test rewards will
be saved under ./eval_exp/ . Then the test re-
wards will be loaded and used for robustness certifica-
tion. The plotted certification results will be saved in the
directory ./exp_cert/comparisons/ .
Results: The plotted results should closely resemble
those in Figure 2 (sub-figure “Cartpole-1” when σ =
0.2) of the paper. The certified curve for CAMP should
be higher than those of the Gaussian and NoisyNet base-
lines.

(E2): [Apply PGD and APGD attacks to evaluate empirical
robustness.] [1 human-minute + 2 compute-hour]: Com-
pare the robustness of CAMP agent and Gaussian agent
to support (C2).
How to:
Preparation: Complete the installation described in
Section A.3 and (E1) to ensure that trained agents are
in place.
Execution: 1) In the root directory of the cloned
repository, run bash ae_step3.sh . This
script attacks previously trained CAMP and Gaus-
sian agents using PGD across different pertur-
bation budgets. The attack results will be saved
under ./exp/ . The comparison between
CAMP and Gaussian agents will be plotted in
attacks/cartpole_simple_pgd_threshold=0.pdf .

2) Run bash ae_step4.sh . This script attacks
previously trained CAMP and Gaussian agents using
APGD across different perturbation budgets. The attack
results will again be saved under ./exp/ . The com-
parison between CAMP and Gaussian agents will be plot-
ted in cartpole_simple_apgd_threshold=0.pdf .
Results: To reduce time costs for evaluators, we have
decreased the number of evaluations from 1,000 to 100
when computing the average return in this artifact eval-

uation. The expected results should reflect the trends in
Figures 3 and 4 (sub-figure “Cartpole-1” when σ = 0.2).
The average return of the CAMP agent should be signifi-
cantly higher than that of the Gaussian agent.

A.5 Notes on Reusability
We have included four scripts in our code repository to
enable a fuss-free reproduction of the training-testing-
certification pipeline and empirical robustness evaluation
tasks in "Cartpole-1" under a specific hyper-parameter set-
ting (σ = 0.2). This configuration represents one of the ma-
jor improvement cases (i.e., "Cartpole" and "Highway"), and
other configurations can be evaluated by simply setting the
env_id and env_sigma arguments in the scripts. Be-

yond these scripts, detailed instructions for running experi-
ments in different environments with various hyper-parameter
settings are available in the readme.md file. This also en-
ables others to adapt CAMP and policy imitation to agents and
environments beyond those tested in our paper. For compre-
hensive information and access to the source code, please visit
our GitHub repository: https://github.com/NeuralSec/camp-
robust-rl.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Francesco Croce and Matthias Hein. Reliable evaluation
of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020.

[2] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
ICLR, 2018.

[3] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U
Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulao,
Andreas Kallinteris, Markus Krimmel, Arjun KG, et al.
Gymnasium: A standard interface for reinforcement learn-
ing environments. arXiv preprint arXiv:2407.17032,
2024.

https://github.com/NeuralSec/camp-robust-rl
https://github.com/NeuralSec/camp-robust-rl
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


