
USENIX Security ’25 Artifact Appendix: Harness: Transparent and
Lightweight Protection of Vehicle Control on Untrusted Android

Automotive Operating System

Haochen Gong, Siyu Hong, Shenyi Yang, Rui Chang*,
Wenbo Shen, Ziqi Yuan, Chenyang Yu, and Yajin Zhou

Zhejiang University

A Artifact Appendix

A.1 Abstract
Harness is a lightweight framework that can transparently
protect vehicle control on untrusted in-vehicle infotainment
systems such as AAOS. Harness defines a minimal protec-
tion domain containing security-critical components related
to car control. Leveraging hardware virtualization features,
Harness isolates the domain, protecting components and sen-
sitive interfaces within the domain from the untrusted OS.
To demonstrate the feasibility of Harness, we implemented
a prototype based on the Google Cuttlefish virtual platform
and evaluated it on a Raspberry Pi 5 development board. This
artifact provides the source code and instructions for building
and running the prototype. We also provide pre-built images
to ease the evaluation. For functionality, we present the main
workflow of Harness via system logs and conduct an attack
simulation. For reproducibility, we provide the benchmarks
stated in the paper to evaluate the overhead of Harness and
the scripts for processing the results.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Harness is a protection framework that does not pose any
security risks. The evaluation needs to be conducted on a
development board. Since we have modified the board’s host
kernel, which may cause some instability, we recommend
backing up the existing data on the board in advance. Our
attack simulation is conducted within a virtual machine and
dose not affect the host. We provide an Internet-accessible
board with a prepared environment to facilitate artifact evalu-
ation. With this, reviewers do not need to worry about risks.

A.2.2 How to access

We host this artifact on Zenodo, and the DOI is 10.5281/zen-
odo.14723474, please refer to the latest version. During the

*The corresponding author.

AE period, reviewers can access our remote device.

A.2.3 Hardware dependencies

We evaluate Harness on a Raspberry Pi 5 development
board with a 4-core Cortex-A76 64-bit 2.4 GHz Broadcom
BCM2712 SoC and 8 GB RAM. Our artifact includes the
modified AOSP components. Hence, an x86 machine is re-
quired to build the source code since AOSP can only be built
on the platform. We recommend using Ubuntu 20.04 for the
OS. In addition, building AOSP can be resource- and time-
consuming. Please ensure the machine has over 300 GB of
disk space and maintains a good network connection.

A.2.4 Software dependencies

Our prototype is developed based on Raspberry Pi kernel (rpi-
6.6.y), AOSP (android-13.0.0_r41), and Android common
kernel (common-android13-5.15). The Raspberry Pi kernel
runs as the host kernel of the board. The host uses Google
Cuttlefish (v0.9.29) to run AAOS within a virtual machine.
To build the prototype, please ensure that the device has git
and repo installed.

A.2.5 Benchmarks

All benchmarks we use for evaluation are provided in the
artifact. Among them are two third-party benchmarks, LM-
Bench 3.0 and Geekbench 5.5.1, which can be installed after
the AAOS boot. The other benchmarks should be placed in
the AOSP source tree and built into the system image.

A.3 Set-up
The Harness prototype can be divided into two parts: host
and guest. The host part includes the modified Raspberry
Pi kernel and a host kernel module containing the Harness
Lowvisor (Section 4). The guest part includes the modified
AOSP userspace framework and Android common kernel
containing the Harness guest kernel module (Section 4). There
are two ways to prepare the environment for evaluation. One

https://doi.org/10.5281/zenodo.14723474
https://doi.org/10.5281/zenodo.14723474

is to build the prototype from scratch, and the other is to
use pre-built images. If you choose the latter, please refer to
the Image Installation section below directly. Reviewers
using our remote device can download and follow the README
from Zenodo to complete the evaluations.

A.3.1 Installation

Build from scratch.

1. Build the host kernel. Enter src/harness_host/ and
run setup.sh. The script will download, patch, and
build the Raspberry Pi kernel. Please refer to the Rasp-
berry Pi document 1 for more details.

2. Build the guest Android common kernel. Enter
src/harness_guest_kernel/ and run setup.sh. The
script will automatically download, patch, and build the
Android common kernel. The output images will be
placed at guest-kimage in the directory. Please refer to
document 2 for more details.

3. Build the guest AOSP. Enter src/harness_aosp/ and
run setup.sh. The script will automatically download,
patch, and build the AOSP. This operation will take
a few hours and the output images will be placed at
aosp-image in the directory. Note that benchmarks in
APK format are built during this time. Please refer to
document3 for more details.

4. Build the Lowvisor. Enter src/harness_host/
harness_host_kernel_module/ and run make to
build the kernel module harness.ko.

Image Installation.

1. Install the host kernel. If using the prebuilt image, up-
load the images/host-kernel/kernel_2712.img to
the /boot/firmware of the board. Otherwise, follow
the Section Cross-compile the kernel in the document1

to install the kernel on the boot media. Make sure that
the device uses the kernel_2712.img as the kernel.

2. Install guest images. If using the prebuilt images, simply
upload the images folder to the board and extract the
AOSP archive files inside (a .zip and a .tar.gz) in
need. Otherwise, upload the AOSP and Android common
kernel images to the Raspberry Pi and extract the archive
files. Place all the images in the same folder (the working
directory).

Cuttlefish Installation. Upload the pre-built packages
(images/cuttlefish-prebuilt) to the board and run the
install.sh. Follow the Cuttlefish document4 for details.

1https://www.raspberrypi.com/documentation/computers/linux_kernel.html
2https://source.android.com/docs/setup/build/building-kernels
3https://source.android.com/docs/setup/build/building
4https://source.android.com/docs/devices/cuttlefish/get-started

Lowvisor Installation. If using the prebuilt images, install
the .ko file in the working directory using insmod. Other-
wise, upload the harness.ko to the board and install it using
insmod.

A.3.2 Basic Test

Enter the working directory and run:
HOME=$PWD ./bin/launch_cvd
-kernel_path=./guest-kimage/Image
-initramfs_path=./guest-kimage/initramfs.img
-daemon -cpus=4 -memory_mb=6144 -vhost_net=true
Run ./bin/adb shell to connect to the device terminal.
The guest log will be output to the logcat and kernel.log
in cuttlefish/instances/cvd-1/logs/. Follow the Cut-
tlefish WebRTC document 5 to check if the virtual device is
successfully booted and enters the home screen of AAOS.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Harness can transparently enclave userspace An-
dorid components (e.g., apps and services) without in-
trusive modification. This is proven by the experiment
(E1), which demonstrates the functionality of Harness
enclaves through system logs.

(C2): Harness can defeat potential attacks and protect the
vehicle control chain of AAOS. This is proven by the
attack simulation experiment (E2) described in Section
6.2 of the paper.

(C3): The performance and memory overhead of Harness
are acceptable. This is proven by the experiment (E3) de-
scribed in Section 6.3 of the paper, which covers a range
of microbenchmarks (e.g., LMBench) and an application
benchmark (Geekbench 5).

A.4.2 Experiments

(E1): [Basic Functionality] [30 human-minutes]: Harness
can enclave userspace Andorid components (e.g., apps
and services) without intrusive modification.
How to: Combine system logs and process status to
check the workflow and usage of Harness enclaves.
Preparation: Enable Lowvisor logging in the host ker-
nel module source, then compile and install the module.
Execution: (1) During the AAOS boot, check the host
system logs using the dmesg command. The Lowvisor
will output the creation and execution status of enclaves.
(2) After booting, connect to the virtual device using
adb, using ps -A command to check process states. You
will see the enclaved Zygote (zygote64_enclaved) run-
ning, and its child processes are also enclaved.

5https://source.android.com/docs/devices/cuttlefish/webrtc

https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://source.android.com/docs/setup/build/building-kernels
https://source.android.com/docs/setup/build/building
https://source.android.com/docs/devices/cuttlefish/get-started
https://source.android.com/docs/devices/cuttlefish/webrtc

(3) Using the adb install command to in-
stall the Geekbench (benchmarks/Geekbench
5_5.5.1_APKPure.apk) and run it. You will see the
Geekbench process is forked from the enclaved Zygote.
Results: If the observed logs and process status meet
expectations, the functionality of the Harness enclave
can be validated. Since Geekbench’s source code cannot
be modified, its successful execution inside an enclave
implies that no intrusive modifications are needed.

(E2): [Security Features] [1 human-hours]: Harness can
achieve our claimed security guarantee.
How to: Run the attack simulation and check if the
Lowvisor can detect malicious behaviors.
Preparation: (1) Memory-based attacks: Apply the
patch attack_sim/mattack_gkernel.patch to the
Android common kernel. Replace the host kernel with
the attack_sim/kernel_2712-att.img and use the
host kernel module in attack_sim/. Only use this
image for memory-based attack simulation to avoid
conflicts. Enter attack_sim/sectests and run make.
Using adb push to upload the output binaries and
do_sectests.sh to the virtual device.
(2) Malicious IPC: The BinderBench and
TestAppService (in aosp/device/harness/apps/)
work as a client-server pair using a protected interface.
You can edit their AndroidManifest.xml to remove
one of them from its enclave. Alternatively, you can
use the prebuilt APKs (BinderBench-nencl.apk and
TestAppService-nencl.apk) in the benchmarks/.
(3) Input injection: Uncomment the definition of
the macro HNS_ATTSIM_INPUT in LibHarness (aosp/
framework/base/libs/harness/harness.cpp). En-
able the Lowvisor logging HNS_EVTVF_DLOG.
Execution: (1) Memory-based attacks: Run the script
do_sectests.sh on the virtual device and check the
log of the guest and host.
(2) Malicious IPC: Run the app BinderBench on the
virtual device and click the AutoBench button. Check
the logcat, and you will see the Exception message
error, indicating that the transaction failed.
(3) Input injection: Open an enclaved app, click the vir-
tual device screen 10 more times through WebRTC and
check the host log.
Results: The system logs will output information about
detected malicious behaviors.

(E3): [Overhead of Harness] [1 human-hour + 1 compute-
hour]: Harness incurs acceptable performance and
memory overhead.
How to: Run the benchmarks; Compare the memory
usage when using Harness or not.
Preparation: (1) Compile and install the LMBench:
We provide the binaries of LMBench and you can sim-
ply upload the benchmarks/lmbench-3.0-a9-eval
folder to the virtual device using adb push. To

build it from scratch, enter the folder and run make
CC=aarch64-linux-gnu-gcc OS=linux.
(2) Install Geekbench: Using adb install to install
benchmarks/Geekbench 5_5.5.1_APKPure.apk.
(3) Non-enclaved: To evaluate the impact on non-
enclaved components, install the benchmarks in
benchmarks/non-enclaved and repeat the tests.
Execution: (1) LMBench. Enter the src
folder of LMBench and run env OS="linux"
../scripts/results. The results will be saved at
results/linux/localhost.0.
(2) Binder latency. Launch the BinderBench app and
click the AutoBench button. The result will be output
into the logcat.
(3) Input responsiveness. Launch the EvalApp on the
virtual device and use a clicker 6 to continuously click in
the blue region labeled TEST INPUT EVENTS. Wait for
10 15 minutes and stop the clicker. The results will be
recorded in the logcat.
(4) Car API latency. Launch the EvalApp on the virtual
device and click the red region labeled TEST CAR API.
Then, wait for the message "EvalCarAPI: Evaluation on
Car API end" to appear in the logcat. The results will
be recorded in the logcat.
(5) Geekbench. Launch the Geekbench on the virtual
device and run CPU BENCHMARK.
(6) Startup time of apps. Run cold_start.sh and
hot_start.sh (placed at benchmarks/) and redirect
the output to a file.
(7) Memory usage. Run eval_mem.py (placed at
benchmarks/) in the working directory. The script will
output the average memory usage during a period.
Results: Repeat these tests in the baseline system, then
refer to the README to process the obtained results
using the script eval.py. The results should be close to
those presented in the paper.

A.5 Notes on Reusability
Harness is not limited to protecting vehicle control but can
also be applied to secure other Android components, similar
to Android Virtualization Framework7. Please refer to Section
6.4 of our paper for detailed discussion.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

6https://github.com/InJeCTrL/ClickRun
7https://source.android.com/docs/core/virtualization

https://secartifacts.github.io/usenixsec2025/
https://github.com/InJeCTrL/ClickRun
https://source.android.com/docs/core/virtualization

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

