
USENIX Security ’25 Artifact Appendix:
Exposing the Guardrails: Reverse-Engineering and Jailbreaking Safety

Filters in DALL·E Text-to-Image Pipelines

Corban Villa
New York University Abu Dhabi

Shujaat Mirza
New York University

Christina Pöpper
New York University Abu Dhabi

A Artifact Appendix

A.1 Abstract

This artifact includes all of the required code and dataset
to validate and reproduce results of the paper: Exposing the
Guardrails: Reverse-Engineering and Jailbreaking Safety Fil-
ters in DALL·E Text-to-Image Pipelines. This full dataset,
which thoroughly evaluates DALL·E 2/3 systems across thou-
sands of requests, is fully available to elicit queries and an-
alyze (with harmful prompts redacted but available upon re-
quest). We additionally include scripts to perform a scaled-
down experiment to allow evaluators to independently assess
the reproducibility of our results.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifact has been carefully constructed to prevent unin-
tended exposure to potentially harmful or disturbing material
inherent to the nature of this work. For instance, we redact
image prompts in our public dataset–replacing them with
SHA256 hashes. (Unredacted prompts are available upon
request.) Artifact evaluation scripts are entirely automated
and do not require evaluators to interact with any potentially
harmful material. Images produced are stored directly in the
database to prevent inadvertent exposure.

We do not cause harm to the T2I systems as we are using
them as a regular user within the existing rate limits. Fur-
thermore, our methodology is consistent with previous peer-
reviewed work that evaluates T2I systems under adversarial
conditions [1, 2].

A.2.2 How to access

Artifact: The dataset and code is permanently available at:
https://doi.org/10.5281/zenodo.14735417.
GitHub: The code and datasets above are additionally avail-
able on GitHub.

A.2.3 Hardware dependencies

A commodity computer:
• 2+ CPU cores
• 4GB+ memory
• 10GB+ disk storage

A.2.4 Software dependencies

Operating System Requirements: Evaluation scripts are
validated with Ubuntu 22.04. Compatibility with other op-
erating systems may vary.
Software Package Requirements: docker and docker
compose (install guide). Validated with version 27.3.1.
Privileged Access Requirements: A few of our configuration
scripts require the user have sudo access in order to manage
container data. For instance, the postgres data is owned by
root within the container, and thus requires sudo privileges to
remove the data after use. If this is a concern, we recommend
utilizing a virtual machine for experiments.

A.2.5 Benchmarks

Adversarial prompt datasets originate from Qu et al., Rando
et al., and Yang et al. These prompts do not need to be down-
loaded by evaluators.

A.3 Set-up

A.3.1 Installation

Install the latest version of docker and add your current user
to the docker group:

• curl -L https://get.docker.io | bash
• sudo usermod -aG docker $USER
• Logout and log back in.

Clone and enter the GitHub repository:
• git clone https://github.com/corbanvilla/
T2I-Attacks-USENIX-2025.git

• cd T2I-Attacks-USENIX-2025

https://github.com/Yuchen413/text2image_safety
https://github.com/YitingQu/unsafe-diffusion
https://doi.org/10.5281/zenodo.14735417
https://github.com/corbanvilla/T2I-Attacks-USENIX-2025
https://docs.docker.com/engine/install/ubuntu/
https://dl.acm.org/doi/10.1145/3576915.3616679
https://arxiv.org/abs/2210.04610
https://arxiv.org/abs/2210.04610
https://www.computer.org/csdl/proceedings-article/sp/2024/313000a123/1Ub23wEASRO
https://get.docker.io
https://github.com/corbanvilla/T2I-Attacks-USENIX-2025.git
https://github.com/corbanvilla/T2I-Attacks-USENIX-2025.git

A.3.2 Basic Test

Execute: ./scripts/validate-install.sh

Command:
> . / s c r i p t s / va l i da te − i n s t a l l . sh

Expected Output :
. . .
Docker compose b u i l d completed s ucce ss fu l l y
A l l v a l i d a t i o n checks passed !

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We reverse-engineer the black-box cascading safety
guardrails in DALL·E models using a novel time-based
side-channel, providing insights into a multi-stage filter-
ing process (§5). This is replicated in experiment (E1),
described in §5.1, which identifies the presence of mul-
tiple DALL·E 2 filters through statistical significance
testing. Experiment results also mirror those in Fig. 2.

(C2): We synthesize key takeaways for T2I system security
by juxtaposing safety mechanisms present in DALL·E
2 and DALL·E 3, notably the incorporation of an LLM-
based implicit filter in DALL·E 3 (§4.4) to soften harm-
ful prompts, quantified through experiments that analyze
prompt toxicity before and after revisions (E2).

(C3): We introduce novel jailbreaking attacks specific to T2I
models, namely T2I negation and low-resource-language
attacks, which exploit the limitations of safety filters in
handling negated phrases and less common languages
(§6). We experimentally evaluate the success rates of
jailbreaking low-resource languages (E3).

A.4.2 Experiments

Experiment Data Collection: [30-45 compute-minutes]: To
run all experiments (E1-E3) and collect the required dataset
for analysis, run the following commands. Experiments are
estimated to require 30-45 minutes to complete. Please allow
the experiments to run continuously and uninterrupted to
completion to minimize the potential for noise variation in
the DALL·E system performance.

The script will prompt evaluators to provide three key con-
figuration secrets, which are included via a HotCRP comment:
1) An OpenAI API key, 2) an OpenAI organization key, and
3) a prompt dataset decryption key.
Execute: ./scripts/artifact-evaluation.sh
Results: Experiments are validated using Jupyter Notebook
analysis scripts. Connect to the pre-configured Jupyter note-
book server at: http://127.0.0.1:8888/lab (The default security
token is: T2I-USENIX-rubpGTNAzgd4tgk7npb)
(E1): [DALL·E 2 Blocklist Probing] [5 human-minutes]:

Command:
> . / s c r i p t s / a r t i f a c t −eva lua t i on . sh

Expected Output :
. . .
A l l experiments completed
A r t i f a c t eva lua t i on completed

Description: This experiment demonstrates the effec-
tiveness of our DALL·E 2 blocklist probing attack, which
allows an attacker to detect independent filter systems
by their respective response times (§5.1).
Dataset: This experiment uses 5 pairs of blocklisted
and mutated words, repeated 5 times each, for a total of
50 requests to DALL·E 2.
Success Criteria: The experiment demonstrates the sta-
tistical significance between rejection timings.
Results: To validate our blocklist probing side-channel
attacks:

1. Open src/artifact_evaluation/
1-timing-side-channel.ipynb in the Jupyter
notebook.

2. Select Run All Cells from the Run menu.
3. Validate the final cell demonstrates statistical signif-

icance.
(E2): [Quantifying Prompt Softening] [5 human-minutes]:

Description: This experiment quantifies the effect of
the LLM prompt revision prompt as an implicit filtering
mechanism in DALL·E 3 using two key metrics: Toxicity
Absolute Change and Toxicity Theme Similarity (§3.3).
Dataset: This experiment uses 5 prompts in 4 languages
(Hawaiian, Lao, Nepali, Sinhala) for a total of 20 requests
to DALL·E 3. Prompts and revised prompts are evaluated
for toxicity using the OpenAI Moderation API.
Success Criteria: The experiment demonstrates that
the prompt revision model "softens" the toxicity of harm-
ful prompts to various degrees of success under multilin-
gual inputs.
Results: To validate our prompt softening claims:

1. Open src/artifact_evaluation/
2-prompt-softening.ipynb in the Jupyter note-
book.

2. Select Run All Cells from the Run menu.
3. Validate the final cell demonstrates various toxic-

ity changes and similarity decreases, with the mag-
nitude of change dependent on the respective lan-
guage.

(E3): [Low-Resource Languages] [5 human-minutes]:
Description: This experiment demonstrates that low-
resource languages can be used as an effective mecha-
nism to bypass DALL·E safety filters (§6.1).
Dataset: This experiment uses 5 prompts in 5 languages
(English, Nepali, Sinhala, Lao, Hawaiian) for a total of
25 requests to DALL·E 3.

http://127.0.0.1:8888/lab?token=T2I-USENIX-rubpGTNAzgd4tgk7npb

Success Criteria: Languages with fewer pages in the
Common Crawl dataset frequently feature higher prompt
acceptance rates.
Results: To validate our low-resource language attacks:

1. Open src/artifact_evaluation/
3-low-resource-lang-attack.ipynb in the
Jupyter notebook.

2. Select Run All Cells from the Run menu.
3. Validate the final cell depicts various language by-

pass rates.

A.4.3 Cleanup Procedure

To shutdown and remove the deployed containers and their
respective images, run the following script. After executing,
you may additionally wish to remove (rm -rf) the repository.
Execute: ./scripts/cleanup.sh

A.5 Notes on Reusability
We encourage future research to leverage our comprehen-
sive datasets. The full experiment dataset is published under
datasets/postgres/redacted.sql.zip. The README.md
documentation describes how to interact with the dataset more
comprehensively. Moreover, src/examples.ipynb details a
number of ways to query the database, including how to use
specific functions such as cosine similarity or vector norms.

While specifics of the dataset, such as average or median
response times may vary as DALL·E 2/3 are continuously
updated by OpenAI, we expect the core findings to maintain
relevancy (e.g., the statistical distributions of response times).
Exploring Key Findings: All tables and figures in this
work can be produced using notebook files located under:
src/paper.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments
	Cleanup Procedure

	Notes on Reusability
	Version

