ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security ’25 Artifact Appendix: Efficient Multi-Party Private Set
Union Without Non-Collusion Assumptions

Minglang Dong!?3, Cong Zhang*, Yujie Bai'>3, and Yu Chen'?3®

I'School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
2Quan Cheng Laboratory, Jinan 250103, China
3Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Qingdao 266237, China
“Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{minglang_dong,baiyujie } @mail.sdu.edu.cn, zhangcong @mail.tsinghua.edu.cn, yuchen @sdu.edu.cn

A Artifact Appendix

A.1 Abstract

We present an open-source C++ implementation of the two
MPSU protocols proposed in our paper. The artifact includes
the complete source code and configurations needed to repli-
cate our experiments in Section 7. We also provide detailed
setup instructions for installing dependencies, building the
project, and running the protocols. Our implementations en-
able evaluators to run these two protocols with customizable
parameters, such as number of parties and set size, to evalu-
ate the online and offline performance under various settings.
The artifact is available, functional, and reproducible. We
welcome suggestions and performance reports for future re-
producibility.

A.2 Description & Requirements

Our artifact is structured as follows:

e SKMPSU/ and PKMPSU/: Complete implementations of
our SK-MPSU and PK-MPSU protocols, respectively.

* README.md: Step-by-step guides for dependency in-
stallation, project compilation, and execution.

* autoTestshell/: Automated scripts to test both SK-MPSU
and PK-MPSU protocols, allowing for quick and effi-
cient evaluation across different configurations.

Our implementations support up to 10 parties with sets of
up to 229 items each, on machines with 128GB memory. This
has been tested on Ubuntu 22.04 with g++ 11.4.0.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our implementations are open-source on GitHub at https:
//github.com/real-world-cryptography/MPSU. Our ar-
tifact is also available at https://doi.org/10.5281/
zenodo.14694832.

A.2.3 Hardware dependencies

All experiment results of our paper are obtained by running the
artifact on a single server with 32-cores Intel Xeon 2.70GHz
CPU and 128GB of RAM.

A.2.4 Software dependencies

Our implementations are built on Vole-PSI (https://
github.com/Visa-Research/volepsi) and require addi-
tional library dependencies including OpenSSL (https://
github.com/openssl/openssl) and OpenMP (https://
www . openmp . org) libraries. They have been tested on Ubuntu
22.04 with installations of g++ 11.4.0 and CMake 3.22.1.

A.2.5 Benchmarks

We set the computational security parameter A = 128 and the
statistical security parameter ¢ = 40. We test the balanced
scenario by setting all input sets to be of equal size. In our
SK-MPSU, the element are 64-bit strings. In our PK-MPSU,
the elements are encoded as EC points in compressed form.

A.3 Set-up
A.3.1 Installation

The complete installation guide with all dependencies
and build instructions is available in our GitHub reposi-
tory: https://github.com/real-world-cryptography/
MPSU/blob/main/README.md

https://github.com/real-world-cryptography/MPSU
https://github.com/real-world-cryptography/MPSU
https://doi.org/10.5281/zenodo.14694832
https://doi.org/10.5281/zenodo.14694832
https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://www.openmp.org
https://www.openmp.org
https://github.com/real-world-cryptography/MPSU/blob/main/README.md
https://github.com/real-world-cryptography/MPSU/blob/main/README.md

A.3.2 Basic Test
A.3.3 Test Parameters

We use the following notations for test parameters:

e nn € {10,12,14,16,18,20}: Logarithm of set size
{210 212 214 216 218 220}'

* nt € {1,2,4,8}: Number of threads
e k: Number of parties

e r €{0,...,k— 1}: Party index

A3.4 SK-MPSU Test.

To test SK-MPSU for 3 parties with sets of 2!? items each
in a single thread, execute the following commands in the
SKMPSU/build directory:

e ./main -genSC -k 3 -nn 12

e ./main -preGen -k 3 -nn 12 -r 0 & ./main
-preGen -k 3 -nn 12 -r 1 & ./main -preGen
-k 3 -nn 12 -r 2

* ./main -psu -k 3 -nn 12 -r 0 & ./main -psu
-k 3 -nn 12 -r 1 & ./main -psu -k 3 -nn 12
-r 2

A3.5 PK-MPSU Test.

To test PK-MPSU for 3 parties with sets of 2!% items each
in a single thread, execute the following commands in the
PKMPSU/build directory:

e ./main -preGen -k 3 -nn 12 -r 0 & ./main
-preGen -k 3 -nn 12 -r 1 & ./main -preGen
-k 3 -nn 12 -r 2

e ./main -psu -k 3 -nn 12 -r 0 & ./main -psu
-k 3 -nn 12 -r 1 & ./main -psu -k 3 -nn 12
-r 2

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): In our paper, we claimed that we fully re-implement
the state-of-the-art MPSU protocols in C++. This claim
can be verified by running the experiments with different
configurations in Section A.4.2.

(C2): Before executing the MPSU program, the required
offline files must be generated correctly. Therefore, it is
crucial to run the commands in the specified sequence.

A.4.2 Experiments

(E1): [Config network settings] Config network settings us-
ing tc.

How to: Open a terminal, and execute the follow-
ing command: tc gdisc add dev lo root netem
delay 80ms rate 400Mbit. Then, the local network
is configured as 400Mbit bandwidth with 80ms la-
tency. Evaluators can try other network settings
with other parameters, e.g., S0Mbit/80ms, 1Gbit/40ms,
10Gbit/0.02ms.

Results: Execute “sudo tc qdisc show dev 10 to see if
the network is configured correctly.

(E2): [Run SK-MPSU protocol] : Benchmark the running
time and communication cost of SK-MPSU protocol
across diverse scenarios.

How to: To test SK-MPSU for 3 parties with sets of
212 items each in a single thread, execute the following
commands in the SKMPSU/build directory:

e ./main -genSC -k 3 -nn 12

e ./main -preGen -k 3 -nn 12 -r 0 &
./main -preGen -k 3 -nn 12 -r 1 &
./main -preGen -k 3 -nn 12 -r 2

e ./main -psu -k 3 -nn 12 -r 0 & ./main
-psu -k 3 -nn 12 -r 1 & ./main -psu -k 3
-nn 12 -r 2

Results: The output messages during execution are as
follows:

e generate sc done. This indicates the Share Cor-
relation files have been generated successfully.

e P1 offline preGen time cost = 13.142 s.
This indicates the running time of generating offline
files (including Vole Triples, GMW Triples and
ROT) is 13.142 s.

* P1 offline preGen communication cost =
1.829 MB. This indicates the communication cost
of generating offline files (including Vole Triples,
GMW Triples and ROT) is 1.829 MB.

e P1 communication cost = 1.690 MB. This in-
dicates the online communication cost of the leader
in SK-MPSU protocol is 1.690 MB.

¢ end 3157.4 3157.364 **x*xxxkxx%x This
indicates the online running time of the leader in
SK-MPSU protocol is 3157.4 ms.

* Success! union size: 4098. This indicates the
SK-MPSU protocol successfully completed.

(E3): [Run PK-MPSU protocol] : Benchmark the running
time and communication cost of PK-MPSU protocol
across diverse scenarios.

How to: To test PK-MPSU for 3 parties with sets of
212 items each in a single thread, execute the following
commands in the PKMPSU/build directory:

* ./main -preGen -k 3 -nn 12 -r 0 &
./main -preGen -k 3 -nn 12 -r 1 &
./main -preGen -k 3 -nn 12 -r 2

e ./main -psu -k 3 -nn 12 -r 0 & ./main
-psu -k 3 -nn 12 -r 1 & ./main -psu -k 3

-nn 12 -r 2
Results: The output messages during execution are as
follows:

* Pl offline pre time cost = 0.984 s. This

indicates the running time of generating offline files
(including GMW Triples) is 0.984 s.

e Pl offline pre communication cost =
0.334 MB. This indicates the communication cost
of generating offline files (including GMW Triples)
is 0.334 MB.

e P1 communication cost = 4.956 MB. This in-
dicates the online communication cost of the leader
in PK-MPSU protocol is 4.956 MB.

e end 7984.2 7983.944 *xxkxxk4x% Thig
indicates the online running time of the leader in
PK-MPSU protocol is 7984.2 ms.

* Success! union size: 4098. This indicates the
PK-MPSU protocol successfully completed.

A.5 Notes on Experimental Results

Our latest local tests demonstrate a minor improvement in the
online performance (computation and communication) of our
implementations compared to the results reported in the paper.
This difference stems from an update to Vole-PSI.

We retained the original reported data in the paper primarily
because we became aware of this update after the camera-
ready submission deadline. Additionally, the performance
improvement is minor, and future updates to Vole-PSI or other
library dependencies may continue to introduce slight varia-
tions in results compared to those in the paper.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test
	Test Parameters
	SK-MPSU Test.
	PK-MPSU Test.

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Experimental Results
	Version

