
USENIX Security ’25 Artifact Appendix:
ALERT: Machine Learning-Enhanced Risk Estimation for Databases

Supporting Encrypted Queries

Longxiang Wang†,∗, Lei Xu‡,†,∗, Yufei Chen†, Ying Zou‡, Cong Wang†

†City University of Hong Kong ‡ Nanjing University of Science and Technology

A Artifact Appendix

A.1 Abstract
The artifact is used to evaluate ALERT in Dynamic Search-
able Symmetric Encryption (DSSE) schemes. It includes
source code for reproducing ALERT and three baseline LAAs,
along with the datasets and scripts required to run the exper-
iments. A comprehensive README file is also included to
facilitate easy reproduction of the results.

A.2 Description & Requirements
In this section, we detail the accessibility of our artifact, spec-
ify the required hardware and software dependencies, and
describe the benchmarks used in our experiments.

Specifically, our artifact contains eight folders: baselines,
dataset, final_result, log, model, result, scripts, and src. The
“baselines” folder contains code for evaluating results from
three baseline LAAs. The “dataset” folder stores preprocessed
documents for searchable encryption. The “final_result”,
“log”, “model”, and “result” folders contain essential results
and data (e.g., trained models, extracted co-occurrence ma-
trices) in the risk assessment process. The “scripts” folder
provides scripts for launching risk assessments across differ-
ent SSE schemes and adversary assumptions. The “src” folder
contains ALERT’s core source code, including data prepro-
cessing utilities, classifier training modules, and query risk
assessment implementations.

A.2.1 Security, privacy, and ethical concerns

Throughout our study, we have conducted a thorough ethi-
cal assessment of our research methodology and potential
impacts. Our investigation does not involve human partic-
ipants, personal information, or any sensitive data. The re-
search relies exclusively on three publicly available datasets
for experimental evaluation, neither of which contains any
personally identifiable information. Therefore, there are no
ethical concerns in this paper.

* The first two authors contributed equally to this work.

A.2.2 How to access

Our artifact is available through Zenodo. The artifact
can be accessed at https://doi.org/10.5281/zenodo.
14726862.

A.2.3 Hardware dependencies

We implemented and evaluated ALERT on a server equipped
with two Intel Xeon Platinum 8383C CPUs, eight Nvidia
RTX A6000 GPUs, 2TB of RAM, and 12TB of disk storage.
While the implementation of ALERT is GPU-based, its main
functionality can also be validated by training the model on
alternative CPU/GPU configurations.

A.2.4 Software dependencies

Our experiments were primarily conducted on Ubuntu 22.04,
though our system is compatible with any operating system
that supports Python. For dependency management, we use
“Conda” as our environment management system. All required
packages and their specific versions are documented in the
provided “requirements.txt” file in the published repository.

A.2.5 Benchmarks

In the experiment, we use three widely adopted public datasets
from different domains: the Enron email dataset, the NY-
Times article dataset, and the Wikipedia encyclopedia entries
dataset. All datasets used in our experiments are included in
the “dataset” directory of our published artifact. Detailed in-
formation about the workloads is presented in Section A.4.2.

A.3 Set-up
This section provides detailed instructions for setting up our
experimental environment. The setup utilizes Conda for en-
vironment management and includes a verification step to
confirm the correct installation of all components.

A.3.1 Installation

To ensure full compatibility with ALERT, we recommend
creating a new conda environment with Python 3.9.16:

https://doi.org/10.5281/zenodo.14726862
https://doi.org/10.5281/zenodo.14726862


conda create -n alert python=3.9.16
conda activate alert

Next, install the required dependencies:

pip install -r requirements.txt

The experiments can be reproduced with the provided scripts.

A.3.2 Basic Test

We provide a simple test to verify that all dependencies are
properly installed. Execute the following commands:

cd scripts
bash test_single_risk_assessment.sh

If dependencies are correctly installed, a file should appear in
the “final_result/test_single_risk_assessment” directory.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ALERT demonstrates robust risk assessment capabili-
ties across diverse datasets and adversary settings. This
is validated through experiments (E1) detailed in Sec-
tions 5.2.2 and 5.2.3, with results in Figure 4.

(C2): ALERT is able to provide risk assessment maps among
keywords and illustrate listed findings: (1) Larger γ gen-
erally leads to higher overall leakage risk. (2) An in-
crease in leakage (γ) may introduce noise that obscures
distinct patterns, making certain keywords harder to re-
cover. E2 detailed the experiment steps, corresponding
to results in Section 5.2.1 and Figure 3.

(C3): ALERT shows robustness across FP/BP-DSSE
schemes (with different λ values). Experimental vali-
dation (E3) confirms the findings in Section 5.4, with
corresponding results visualized in Figure 6.

(C4): Keyword clustering based on volume information is
effective. Section 5.3 describes experiment results (E4),
whose results are plotted in Figure 5.

(C5): Keyword dynamic clustering mechanism (DCM) can
significantly reduce risk assessment latency while main-
taining risk assessment accuracy. E5 shows the experi-
ment steps, corresponding to Section 5.3 and Table 1.

(C6): ALERT is the only method to consistently achieve a
high query recovery rate with stable convergence under
low-latency scenario among the selected risk analysis
methods. E6 demonstrates the experiment steps, corre-
sponding to Section 5.5.1 and Figure 7 in the paper.

(C7): ALERT achieves competitive query recovery perfor-
mance compared to other LAA methods without time
constraints. The validation workflow (E7) corresponds
to Section 5.5.2 and results in Figure 8 in the paper.

(C8): ALERT exhibits superior recovery performance (me-
dian query recovery rates) compared with Jigsaw under
similar runtime constraints in large keyword universe
sizes scenario. Experimental validation through E8 cor-
responds to Section 5.5.3 and Figure 9 in the paper.

(C9): ALERT shows higher median query recovery rates
compared with prior alternatives against three padding
countermeasures. E9 specifies experiment workflows,
corresponding to Section 5.5.4 and Figure 10.

A.4.2 Experiments

This section provides experimental procedures to validate
our major claims. Each experiment description is structured
into three main blocks: Preparation, Execution, and Results,
ensuring a clear approach to reproducing our findings.
Preparation: Before running each script, change the di-
rectory to the “scripts” directory and activate the created
conda environment. Set the “if_gpu” field in each script to
choose between CPU or GPU training. If using GPU mode,
specify the desired GPU deviced with “GPU_NUM” (e.g.,
“GPU_NUM=0:1” to use GPUs 0 and 1).
(E1): [Query Recovery Performance on Different Datasets

and Adversarial Assumptions] [5 human-minutes + 60
compute-hours + 510GB disk]: The experiment performs
risk assessments for Enron, NYTimes, and Wikipedia
under two adversarial settings.
Execution: To run the experiment:
bash main_recovery.sh
Results: The results are stored in the “fi-
nal_result/main_recovery” folder. Each file contains
a “cumulative_accuracy” field that records recovery
rates for different keyword numbers. The filename
indicates the experimental settings: dataset names
(Enron/NYTimes/Wiki), adversary type (partial/sample),
and adversary assumptions (data partial known rate γ,
and data sampling rate α).

(E2): [An Example of Recovery Map of ALERT ] [5 human-
minutes + 4 compute-hours + 10GB disk]: This exper-
iment demonstrates a visual representation of ALERT
(Figure 3 in paper). It’s important to note that risk assess-
ment results for concrete queries may exhibit variance
across different training sessions due to randomness in
training data selection. Therefore, we provide specific
training results (probability matrices) for generating the
heat map shown in the paper.
Execution: To generate the heatmap:
bash test_heatmap.sh
Results: The heatmaps generated with different
data partial known rates γ are available in “fi-
nal_result/heatmap”. When γ is small, the random
selection of the training data may introduce variability
in risk assessment outcomes, resulting in figures that
deviate from those reported in the paper. For reference,



we provide the original data and heatmaps for reference
in “final_result/heatmap/ref”.

(E3): [Performance across Forward/Backward Privacy-
DSSE] [5 human-minutes + 10 compute-hours + 50GB
disk]: This experiment aims to illustrate the effectiveness
of ALERT in FP/BP-DSSE schemes.
Execution: We vary data deletion rates λ and show its
impact on query recovery rates. To run the experiment:
bash test_fpbp.sh
Results: The results of the experiment are stored in “fi-
nal_result/test_fpbp” directory, demonstrating the recov-
ery rates under different data deletion rates λ.

(E4): [Keyword Clustering Results with Fixed Parameters]
[5 human-minutes + 1 compute-hour]: This experiment
validates the effectiveness of keyword clustering based
on volume information (as shown in Figure 5).
Execution: The experiment requires first running the
“main_recovery” script to generate the co-occurrence log.
For independent execution, we provide a separate script
to generate these co-occurrence logs.
bash test_dcm_fixed_param.sh
Then, keyword clustering results can be generated by
executing the provided ipynb file:
generate_result_dcm_fixed_param.ipynb
Results: The notebook contains three sections, each cor-
responding to a different subfigure in Figure 5, demon-
strating the effects of different keyword numbers (ϑ),
sampling rates (α), and clustering thresholds (θ).

(E5): [Performance with/without Dynamic Keyword Cluster-
ing Mechanism] [5 human-minutes + 45 compute-hours
+ 50GB disk]: This experiment evaluates the impact
of keyword dynamic clustering mechanism (DCM) on
query recovery rates and risk assessment latencies.
Execution: We compare the query recovery rates and
program runtime with and without the mechanism. Here
is the script how to run the experiment:
bash test_dcm.sh
Results: The results are stored in “final_result/test_dcm”
directory. Each output file contains query recovery rates
and program runtime.

(E6): [Comparisons with Prior Alternatives under Low-
latency Scenario] [5 human-minutes + 45 compute-hours
+ 10GB disk]: This experiment aims to compare the ef-
fectiveness of ALERT with prior alternatives in the risk
assessment scenario.
PS: Although ALERT performs a quick risk assessment,
the training process takes about 1-2 hours. For quick val-
idation of the main claims, the parameter “RUN_TIME”
can be set to 5 in the scripts of later experiments (E6,
E7, E8, E9) to ensure minimum iterations required for
box plot generation. Note that this simplification may
lead to increased variance in the results.
Execution: In this section, we adjust the convergence
speed parameters for each method: “RefSpeed” for Jig-

saw and RSA, “n_iters” for IHOP, and β̃ for ALERT.
These adjustments control the program runtime and risk
assessment time. To run the experiment:
bash test_attacks_low_latency.sh
Results: The results are reserved in “fi-
nal_result/test_attacks_low_latency” folder, where each
filename indicates the corresponding dataset, attack
method, and desired risk assessment latency. Each
file contains data for box plot generation, including
minimum value, first quartile (Q1, 25th percentile),
median, third quartile (Q3, 75th percentile), maximum
value, and the average runtime in seconds.

(E7): [Comparisons with Prior Alternatives without Time
Constraints] [5 human-minutes + 50 compute-hours +
10GB disk]: This experiment compares the effectiveness
of different methods without runtime constraints.
Execution: We provide the script for the experiment:
bash test_attacks_default.sh
Results: Correspondingly, the results are stored in “fi-
nal_result/test_attacks_default”. Note that we set β̃ = 1
to maximize the risk assessment recovery accuracy when
operating without time constraints. For additional vali-
dation with β̃ = 0.4 under default settings, run:
bash test_attacks_default_extend.sh

(E8): [Comparisons in Larger Keyword Universe Sizes un-
der Similar Time Constraints] [5 human-minutes + 90
compute-hours + 30GB disk]: This experiment compares
ALERT and Jigsaw in the Wikipedia dataset to evaluate
their effectiveness facing larger keyword universe sizes
while maintaining comparable execution times.
Execution: To run the experiment:
bash test_large_keyword_wiki.sh
Results: The results are stored in “fi-
nal_result/test_large_keyword_wiki”, where each
filename indicates the dataset and corresponding
keyword universe size used in the experiment.

(E9): [Comparisons with Prior Alternatives Against Coun-
termeasures] [5 human-minutes + 90 compute-hours
+ 30GB disk]: This experiment evaluates ALERT and
baseline LAAs against three padding countermeasures.
Execution: To facilitate reproduction, we provide a
script that executes the complete evaluation process:
bash test_against_countermeasures.sh
Results: The experimental results are stored in the
“final_result/test_against_countermeasures” directory.
Each filename contains the corresponding dataset name,
risk analysis method, and applied countermeasure.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


