
USENIX Security ’25 Artifact Appendix:
A Framework for Designing Provably Secure Steganography

Guorui Liao, Jinshuai Yang, Weizhi Shao and Yongfeng Huang

Tsinghua University

A Artifact Appendix

A.1 Abstract
A.1.1 Artifact Description

The artifact includes the following main components:

1. Python implementations of steganography schemes:

• Two uniform steganography schemes mentioned in
the paper.

• Three provably secure symmetric steganography
schemes proposed within the framework intro-
duced in the paper.

2. Testing scripts:

• Enable readers to verify the correctness and secu-
rity of the steganography schemes.

• Validate other theoretical properties discussed in
the paper, such as stability and the theoretical lower
bound of steganographic capacity.

3. Steganography scripts for text channels:

• Steganography scripts that operate on text channels,
enabling the conversion of secret information into
normal text using the provided schemes, ensuring
that the generated text is indistinguishable from
text naturally produced by large language models.

• Verify the encoding and decoding correctness of
text-based stegotext.

• Provide related statistical metrics mentioned in the
paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact implements steganography schemes and gener-
ally does not pose security or privacy risks. It is developed
for academic research and is not intended for unauthorized
or malicious applications, such as covert communication for

illegal purposes. Users must adhere to ethical guidelines and
comply with applicable laws. The text-based steganography
implementation involves large language models, which may
generate varied outputs based on their training data. While
this artifact does not intentionally influence model outputs,
users should be aware of potential biases or unintended be-
haviors in the generated text.

A.2.2 How to access

https://doi.org/10.5281/zenodo.14737116

A.2.3 Hardware dependencies

This artifact is designed to run on a CUDA-supported GPU
for efficient execution by default. Specifically, a CUDA-
compatible GPU with at least 32GB VRAM is required for
running text-based steganography schemes using large lan-
guage models (e.g., Llama3-8B-Instruct). However, smaller
models can be run on GPUs with less VRAM, depending on
the model size being used.

A.2.4 Software dependencies

Please ensure the following tools are available on your device:

• Miniconda / Anaconda: Used for managing dependen-
cies and creating an isolated Python environment.

• Jupyter Notebook: Required for running verification
tests of the steganography schemes. Ensure Jupyter Note-
book is installed in your environment.

• CUDA-supported GPU environment: Necessary for
executing steganography schemes efficiently. All pro-
vided scripts and code are designed to run on a CUDA-
supported GPU.

• Large Language Model: Required for text-based
steganography. Download from Hugging Face. We rec-
ommend Llama3-8B-Instruct, but you may use other
models like Qwen2-7B-Instruct, etc.

https://doi.org/10.5281/zenodo.14737116
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/
https://huggingface.co/models
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct


A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

The following steps guide the installation of dependencies
and the main artifact:

1. Download the artifact: The artifact is available as a ZIP
archive on Zenodo. Download and extract it.

2. Set up a Python environment: It is recommended to use
Miniconda or Anaconda for environment management.
Create and activate a new environment with Python
3.12:

1 conda create -n fdpss python=3.12
2 conda activate fdpss

3. Install required dependencies: Install all necessary
Python packages:

1 python -m pip install -r requirements.txt

4. Download the large language model: We recommend
downloading the large language model used for text
steganography (e.g., Llama3-8B-Instruct) to your local
machine first and then using the local path to load the
model.

After completing these steps, the artifact should be ready
for evaluation.

A.3.2 Basic Test

To verify that the artifact is installed correctly, run the follow-
ing command:

1 python TextStego.py --model <path_to_model >

When using a downloaded language model, replace
<path_to_model> with its local path. If no errors are reported,
the installation is successful.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The two uniform steganography schemes mentioned
in the paper ensure Security and Correctness. Addition-
ally, the Cyclic-shift Uniform Steganography scheme
achieves near-optimal Capacity, satisfying the theoreti-
cal bound:

H(U(n))≥C(U(n))> H(U(n))−0.0861.

These are proven by the experiment (E1) and described
in Section 4.3 (Security, Correctness) and Section 5.1.1
(Capacity).

(C2): The three provably secure symmetric steganography
schemes (Differential-based, Binary-based, and Stability-
based) proposed in the paper ensure Security and
Correctness. Additionally, the Stability-based scheme
guarantees the ability to embed at least one bit given
any distribution with a minimum entropy of at least 1
(Stability), and the Differential-based scheme achieves
an Capacity that satisfies the theoretical bound:

H − log2(1+H · ln2)−0.0861 ≤C ≤ H.

These claims are validated through experiment (E2) and
further detailed in Section 3.4 (Correctness), Section
3.5 (Security), Section 5.1 (Capacity), and Section 5.2
(Stability).

(C3): For implementing steganography on text channels, we
provide a script (TextStego.py) that performs textual
steganography, verifies encoding and decoding Correct-
ness, and provides statistical metrics for a single sample.
These experiments correspond to scenarios (A and B)
described in Table 1 of Section 5 and demonstrate the
relevant metrics for an individual sample. These claims
are validated through experiment (E3).

See Schemes_Verification(English).ipynb for more
details on the validation of C1 and C2.

A.4.2 Experiments

(E1): [less than 1 min]: To verify the uni-
form steganography schemes, open
Schemes_Verification(English).ipynb and
follow the steps in the section Verification of Uniform
Steganography. Run the Jupyter Notebook blocks
corresponding to:

• Test 1.1: Security validation – Ensures the sam-
pled frequencies align with the given n-uniform
distribution.

• Test 1.2: Correctness validation – Verifies that
encoding and decoding produce consistent results.

• Test 1.3: Capacity validation – Tests whether the
Cyclic-shift Uniform Steganography scheme satis-
fies the theoretical bound:

H(U(n))≥C(U(n))> H(U(n))−0.0861.

The execution results, corresponding explanations, and
expected outcomes are provided within the Jupyter Note-
book itself.

(E2): [less than 30 mins]: To verify the provably se-
cure symmetric steganography schemes, open
Schemes_Verification(English).ipynb and fol-
low the steps in the section Verification of Provably

https://doi.org/10.5281/zenodo.14737116
https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct


Secure Symmetric Steganography. Run the Jupyter
Notebook blocks corresponding to:

• Test 2.1: Security validation – Ensures that the
frequencies of multiple steganographic sampling
results align with the given distribution.

• Test 2.2: Correctness validation – Verifies that
encoding and decoding produce consistent results.

• Test 2.3: Stability validation – Tests whether the
Stability-based scheme always allows embedding
at least one bit when the distribution has a mini-
mum entropy of at least 1.

• Test 2.4: Capacity validation – Verifies whether
the Differential-based scheme satisfies the theoreti-
cal bound:

H − log2(1+H · ln2)−0.0861 ≤C ≤ H.

The execution results, corresponding explanations, and
expected outcomes are provided within the Jupyter Note-
book itself.

(E3): [About 1 minute to run once under the default setting]:
Execution: Execute the following command:

1 python TextStego.py --model <path_to_model >

Results: The script performs encoding and decoding
for text steganography and outputs relevant information.
Specifically, it:

• Generates a secret key and initializes PRG_Encode.
• Uses the Encode algorithm with secret information

from bit_stream.txt to produce stegotext.
• Displays the generated stegotext along with the em-

bedded secret bits.
• Uses the same key to initialize PRG_Decode and

apply the Decode algorithm to extract the embedded
bits from the stegotext.

• Outputs verification results to check whether the
extracted bits match the original secret bits.

• Provides statistical metrics per token, such as em-
bedding capacity (C), entropy (H), C/H, the fre-
quency of tokens with zero embedded bits (NR), and
sampling time per token (T).

For more details, refer to the README under Imple-
menting Steganography on Text Channels → Execu-
tion and Output.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Artifact Description

	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


