ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Serverless Functions Made
Confidential and Efficient with Split Containers

Jiacheng Shi, Jinyu Gu, Yubin Xia, Haibo Chen
Institute of Parallel and Distributed Systems (IPADS), SEIEE, Shanghai Jiao Tong University
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

A Artifact Appendix

A.1 Abstract

The artifact includes the following components: (1) the
source code of CoFunc system, including the CVM OS code
(cvm_os), the shadow container code (shadow_container)
and the patches for the host Linux/QEMU (patches);
(2) the serverless functions utilized for the evaluation
(testcases/testcases); (3) the scripts for conducting the
experiments (scripts and testcases/tools). Users of this
artifact can evaluate the performance of serverless functions
under different container runtimes, including split containers
(CoFuNC), CVM-based Kata Containers (Kata-CVM), and
native lean containers (Native).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact poses no harm to machine security or data privacy.

A.2.2 How to access

The artifact is available at Github (https://github.com/
shijc-sjtu/cofunc-artifact) and Figshare (https://
doi.org/10.6084/m9.figshare.28234346.v4).

A.2.3 Hardware dependencies

The artifact requires AMD CPUs with SEV-SNP support. It
has been tested on an EPYC-7T83 machine. At least 96 CPU
cores and 180GB of memory are required.

A.2.4 Software dependencies

The artifact works on an SEV-SNP version of the Linux
kernel (https://github.com/AMDESE/linux.git, branch
svsm-preview-hv-v2), along with the modifications in
patches/linux.patch. The following dependencies are re-
quired for building the artifact and running the experiments:
Docker, screen, Python 3 (with matplotlib, numpy, boto3, pan-
das, CouchDB) and gcc.

A.2.5 Benchmarks

The Dockerfiles for building the serverless functions are avail-
able at testcases/testcases.

A.3 Set-up
A.3.1 Installation

For reviewers using the test server, the artifact is already in-
stalled, and no further steps are required. Other users need to
build the artifact components and set up the host environment
with the steps described in the README.

A.3.2 Basic Test

Run the script scripts/run_simple.sh, which executes a
serverless function using COFUNC. The script will output the
function’s running time.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): For the 28 evaluated functions, COFUNC demonstrates
significant performance improvements (up to 60x) com-
pared with Kata-CVM, while incurring <14% perfor-
mance overhead compared with Native. This is proven
by the experiment (E1) described in Section 7.1 whose
results are illustrated in Figure 11.

(C2): CoFuNCc outperforms Kata-CVM on FINRA applica-
tion by 31x when 200 auditing functions start concur-
rently. This is proven by the experiment (E2) described
in Section 7.4 whose results are reported in Section 7.4.

A.4.2 Experiments

(E1): [1.5 compute-hours]: Evaluate the end-to-end laten-
cies (handling a single request) of the functions using
CoFuNc, Kata-CVM, and Native.

Preparation: None.

Execution: Run the script scripts/run_figll.sh.
This script executes the functions with different runtimes
and outputs the latencies to the log directory.


https://github.com/shijc-sjtu/cofunc-artifact
https://github.com/shijc-sjtu/cofunc-artifact
https://doi.org/10.6084/m9.figshare.28234346.v4
https://doi.org/10.6084/m9.figshare.28234346.v4
https://github.com/AMDESE/linux.git

Results: The script will generate a table at
plots/figll.txt that contains the function la-
tencies and the overhead/optimization of COFUNC
compared with Native/Kata-CVM. Additionally, the
script will generate a figure at plots/figll.pdf,
which can be compared with Figure 11.

(E2): [10 compute-minutes]: Evaluate the end-to-end latency
of FINRA application with 200 concurrent auditing func-
tions using COFUNC and Kata-CVM.

Preparation: None.

Execution: Run the script scripts/run_finra.sh.
This script executes FINRA application with different
runtimes and outputs the latencies to the 1og directory.

Results: The end-to-end application latencies and the
optimization of COFUNC compared with Kata-CVM can
be found in plots/finra.txt.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version




