
USENIX Security ’25 Artifact Appendix: Sound and Efficient Generation
of Data-Oriented Exploits via Programming Language Synthesis

Yuxi Ling∗ Gokul Rajiv∗ Kiran Gopinathan† Ilya Sergey∗

∗National University of Singapore
†University of Illinois Urbana-Champaign

A Artifact Appendix

A.1 Abstract

This appendix presents the artifact of the paper: "Sound and
Efficient Generation of Data-Oriented Exploits via Program-
ming Language Synthesis". We first present a detailed descrip-
tion of hardware and software needed to build our framework
Doppler and the baseline framework BOPC. We also provide
an experiment list and a comprehensive guide to reproduce
the experiments with estimated time. Additionally, we discuss
how Doppler is reusable for new programs.

A.2 Description & Requirements

This section introduces the necessary requirements to set up
the environment for running the artifact and recreating the
same experiments as in the paper, including ethical concerns,
how to access the artifact, hardware and software dependen-
cies, and benchmarks. We recommend evaluators run the
artifact in a Docker container.

A.2.1 Security, privacy, and ethical concerns

There is no security risk for evaluators while executing this ar-
tifact in their Docker container. This artifact is fully executed
locally without any possible data collection or leakage. All
the data used in the experiments are publicly available and do
not contain any sensitive information.

A.2.2 How to access

The artifact is available on Github1. Two Dockerfiles are pro-
vided to build the Docker image for our framework Doppler
and the baseline framework BOPC in the Github repository.

A.2.3 Hardware dependencies

A commodity laptop in either ARM or AMD(x86-64) archi-
tecture is sufficient to run the artifact. A minimum of 4GB

1https://zenodo.org/records/14718582

of RAM and 5GB of disk space is recommended. All the ex-
periments in the paper are conducted on a commodity laptop
running Ubuntu 22.04 with Intel Core i7 processor, 16GB of
RAM, and 512GB of disk space.

A.2.4 Software dependencies

The artifact can be either built from the source code or the
Dockerfile. If evaluators choose to build the artifact from the
source code, the main dependencies are listed below:

• Ubuntu 22.04 (Recommended)

• LLVM 13

• Clang 13

• Z3 4.13.4

• KLEE 3.0

If the evaluators choose to build the artifact from the Dock-
erfile, the main software required is Docker. A detailed list
of environmental dependencies and installation commands is
provided in the Dockerfile.

A.2.5 Benchmarks

There are 17 benchmarks used in the paper, including 6 char-
acteristic programs to illuminate Doppler features and 11
real-world programs to show the scalability of it.

A.3 Set-up
This section introduces how to set up the environment and
get the executables to run our framework Doppler and the
baseline framework BOPC.

A.3.1 Installation

Once the repository is cloned and the Docker is installed,
evaluators can build the environment by running the following
commands:

• cd DOPPLER

 https://zenodo.org/records/14718582


• docker build -t doppler-image .

• docker run -it -name my-doppler
doppler-image /bin/bash

In the docker container my-doppler, you will get an exe-
cutable file DOPPLER/build/doppler. The same procedure
can be applied to the BOPC.

A.3.2 Basic Test

To test if Doppler is correctly installed and executable, di-
rect to the path DOPPLER/build and test the command:
./doppler -h. If the help message is printed, Doppler is
correctly installed. You can set up other options and input
files to test Doppler further.

To rest if BOPC is correctly installed and executable, di-
rect to the path BOPC_evaluation and test the command:
python ./BOPC/source/BOPC.py. If the warning message
complains the input file is missing, BOPC is correctly in-
stalled.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Doppler and BOPC work in all benchmark programs.
The results are consistent with those shown in Table 4
of our paper.

(C2): The statistics for the grammar synthesised by Doppler
in all benchmark programs are consistent with those
shown in Table 5 of our paper.

A.4.2 Experiments

(E1): [Running BOPC demo] [5 human-minutes + 0.5
compute-hour]: run demo programs in BOPC and col-
lect results.
How to: Execute the shell script provided in the file
BOPC_evaluation/tb4_bopc.sh
Execution: Detailed instructions are pro-
vided in the last section of the file
BOPC_evaluation/README.md
Results: Execution results are stored in a CVS file with
the execution time of each program in each attack goal.
Succeed tasks will produce a payload file with .gdb
suffix.

(E2): [Running BOPC real] [5 human-minutes + 9 compute-
hour]: run real-world programs in BOPC and collect
results.
How to: Execute the shell script provided in the file
BOPC_evaluation/tb4_bopc.sh with a differ-
ent argument.
Execution: Detailed instructions are pro-
vided in the last section of the file
BOPC_evaluation/README.md

Results: Execution results are stored in a CVS file with
the execution time of each program in each attack goal.
Three tasks would cause a timeout of 2 hours.

(E3): [Running Doppler demo] [5 human-minutes + 1
compute-hour]: run demo programs in Doppler and
collect results.
How to: Execute the shell script provided in the file
DOPPLER_evaluation/demo_run.sh.
Execution: It would automatically compile all demo
programs and execute Doppler. Detailed instruc-
tions are provided in the last section of the file
DOPPLER_evaluation/README.md
Results: Output files include a generated DFA , a gener-
ated grammar, a compiler (an executable binary), and a
trace file. To reproduce the attack payloads described in
Table 4 of the paper, evaluators should manually check
the grammar and determine wether curtain attacks are
possible. To reproduce the grammar statistics, evaluators
should check the execution log files and get the statistics.

(E4): [Running Doppler real] [5 human-hour + 12 compute-
hour]: run real-world programs in Doppler and collect
results.
How to: Execute the shell script provided in the file
DOPPLER_evaluation/real_run.sh with dif-
ferent arguments.
Execution: It would automatically compile one real
program and execute Doppler each time. Detailed in-
structions are provided in the last section of the file
DOPPLER_evaluation/README.md
Results: Output files include a generated DFA , a gener-
ated grammar, a compiler (an executable binary), and a
trace file. The procedure to reproduce results described
in the paper is the same as (E3).

A.5 Notes on Reusability
To run a new program with Doppler, users need to do the
following preparations:

• Know the position of the vulnerability.

• Add KLEE annotations into the source code and compile
it to LLVM IR file.

• Claim corruptable variables in a JSON file.

More detailed instructions for each step can be found in the
README file in the Github repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


