
USENIX Security ’25 Artifact Appendix:
RangeSanitizer: Detecting Memory Errors with Efficient Range Checks

Floris Gorter
Vrije Universiteit Amsterdam

f.c.gorter@vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

A Artifact Appendix

A.1 Abstract

In this artifact we provide instructions to reproduce our main
results. This artifact concerns our tool named RangeSanitizer
(RSan), which detects spatial and temporal memory errors
in C/C++ programs. Our results show that RSan can suc-
cessfully detect memory errors, and does so with higher run-
time performance than traditional redzone-based bug sanitiz-
ers. We have validated the artifact using a system containing
an Intel i9-13900K CPU and running Ubuntu 22.04 with a
stock Linux v5.15 kernel. Our source code is available at:
https://github.com/vusec/rangesanitizer

A.2 Description & Requirements

The experimental setup of RSan (with implicit pointer tagging
by default) concerns an x86 system running Ubuntu. Using
explicit pointer tagging requires hardware support. We require
the evaluators to obtain the SPEC CPU benchmarking suite
themselves, since we cannot distribute the licensed software.

A.2.1 Security, privacy, and ethical concerns

As a bug sanitizer, RSan poses no risks to the security and
privacy of the target machine, and has no ethical implications.

A.2.2 How to access

The files for the artifact evaluation are currently available at:
https://github.com/vusec/rangesanitizer/releases/tag/ae and
https://zenodo.org/records/14701524

A.2.3 Hardware dependencies

By default, we evaluate the implicit pointer tagging design
that supports any (legacy) x86 architecture. If desired, RSan’s
explicit pointer tagging can be used, which requires CPU
hardware support: either Arm TBI (Armv8-a and onwards) or
Intel LAM (Lunar/Arrow Lake). In order to support some of
the benchmarks, 32 GB of RAM is recommended.

A.2.4 Software dependencies

While RSan does not have very specific software require-
ments, some packages from the Ubuntu package manager are
required to be installed to build RSan’s dependencies (e.g.,
the LLVM project). These are described in the Set-up section.
We evaluated RSan on Ubuntu 22.04.

A.2.5 Benchmarks

For this artifact we benchmark using the SPEC CPU2006
benchmarking suite, and the Juliet test suite.

A.3 Set-up
We recommend using a bare-metal desktop system with (at
least) 32 GB of RAM, running Ubuntu 22.04, glibc 2.35, and
a stock v5.15 Linux kernel.

A.3.1 Installation

1. Obtain the artifact source from the ae release:

git clone \
https://github.com/vusec/rangesanitizer.git \
--recurse-submodules --branch ae

cd rangesanitizer

2. Install some standard dependencies:

sudo apt install ninja-build cmake gcc-9 \
autoconf2.69 bison build-essential flex \
texinfo libtool zlib1g-dev unzip

pip3 install psutil terminaltables

3. Configure the RSan environment by editing the env.sh file
and modifying the RSAN_TOP variable to reflect the working
directory of the system, and then run:

source env.sh

4. We recommend changing the CPU scaling governor to
performance for stability in benchmarks (requires sudo):

echo "performance" | sudo tee \
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

mailto:f.c.gorter@vu.nl
mailto:giuffrida@cs.vu.nl
https://github.com/vusec/rangesanitizer
https://github.com/vusec/rangesanitizer/releases/tag/ae
https://zenodo.org/records/14701524


5. Install the RSan infrastructure by running:

./install-all.sh

NOTE: installing LLVM can take up a lot of RAM when
using multiple cores. If the compilation process crashes
(OOM), modify the ninja -j <cores> parameter inside
install-all.sh to use fewer cores.

A.3.2 Basic Test

To test the basic functionality of RSan, we provide two test
programs in the examples directory. To compile and run
these tests, execute:

cd examples
./test-implicit.sh

See README.md in the artifact for the exact expected output
format (returned addresses may vary).

A.4 Evaluation workflow

In order to run the Juliet test suite and SPEC CPU along with
its benchmarks we make use of a public infrastructure under
the infra directory. The infra also makes sure the SPEC
binaries are pinned to core 0. Make sure that the necessary
python packages are installed (see the Installation section).

A.4.1 Major Claims

(C1): RSan can detect spatial and temporal memory errors
bounded by its security guarantees (as described in Sec-
tion 7.1). This is proven by experiment E1.

(C2): RSan provides high performance in terms of runtime
overhead (see Section 7.3). This is proven by experiment
E2.

A.4.2 Experiments

(E1): [30 compute-minutes]: Confirming memory error de-
tection.
How to: The Juliet test suite contains buggy programs
for which RSan can detect the bugs at runtime.
Preparation: Ensure that the env.sh and install.sh
scripts have been executed successfully. Note that we
run Juliet with optimization flag -O0, because standard
optimizations (e.g., -O2) hide bugs in the test cases. Feel
free to also test Juliet with AddressSanitizer (ASan):
change the target of setup.py from rsan-impl_O0 to
asan_O0 in the command below.
Execution: Execute the following command, which
builds and runs the relevant Juliet categories (see Ta-
ble 1):

python3 setup.py run juliet rsan-impl_O0 \
--build --parallel=proc \
--parallelmax=$(nproc) \
--cwe 121 122 124 126 127 415 416

Results: The exact expected output can be found in the
README.md file in the artifact. All tests are expected
to pass.

(E2): [5 compute-hours]: Confirming runtime performance.
How to: Run the SPEC CPU2006 benchmarking suite
instrumented by RSan and ASan, and observe the
performance overhead compares to a baseline (non-
instrumented) run.
Preparation: SPEC CPU2006 needs to be available on
the system and the RSAN_SPEC2006 variable in env.sh
needs to point to the directory where it is installed.
For the artifact evaluators, if they cannot obtain SPEC
CPU2006, we can provide access to a machine ready
to run SPEC. Ensure that the env.sh and install.sh
scripts have been executed successfully (env.sh needs
to be reloaded after modifying its content).
Execution: Execute the following command, which
builds and executes SPEC CPU2006 for three runs: the
baseline, one with ASan, and one with RSan, which in
total takes multiple hours:
python3 setup.py run spec2006 baseline_O2 \
rsan-impl_O2 asan_O2 --build \
--parallel=proc --parallelmax=1

Results: The exact expected output can be found in the
README.md file in the artifact. Note that there will be
a corresponding output folder in the results directory
which can be inspected. To obtain a summary of the
results from the SPEC CPU2006 runs, again make use of
the setup.py script. Execute the following command:
python3 setup.py report spec2006 \
results/last --field runtime:median \
maxrss:median

The output of this command can then be used to calculate
the runtime and memory overheads for each individual
binary, as well as for the geomean. As reported in Fig-
ure 9: if ran on an x86 machine with an i9-13900K CPU,
the expected runtime overhead for RSan is 51%, and
95% for ASan. See the README.md file in the artifact
for a complete example output and the corresponding
geomean overhead calculation.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


