ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Towards Practical, End-to-End
Formally Verified X.509 Certificate Validators with Verdict

Zhengyao Lin®
Paul Hitchcox'

TCarnegie Mellon University

A Artifact Appendix

A.1 Abstract

Paper: Validating X.509 certificates is a critical part of In-
ternet security, but the relevant standards are complex and
ambiguous. Most X.509 validators also intentionally deviate
from these standards in idiosyncratic ways, often for security
or backward compatibility. Unsurprisingly, the result is a long
history of security vulnerabilities.

In this work, we present Verdict, the first end-to-end for-
mally verified X.509 certificate validator with customizable
validation policies. Verdict’s formal guarantees cover certifi-
cate parsing, path building, and path validation. To make Ver-
dict practical to both verify and to use, we specify its correct-
ness generically in terms of a user-supplied validation policy
written concisely in first-order logic, with a proof-producing
compiler to efficient Rust code.

To demonstrate Verdict’s expressiveness, we use Verdict’s
policy framework to implement the X.509 validation policies
in Google Chrome, Mozilla Firefox, and OpenSSL, and
formally prove that they conform to a subset of RFC
requirements. We instantiate Verdict with each policy and
show that Verdict matches the corresponding baseline’s
behavior and state-of-the-art performance on over ten million
certificates from Certificate Transparency logs.

Artifact: This artifact includes the source code of Verdict,
as well as forks of six other X.509 validators we evaluate
against: Chrome, Firefox, OpenSSL, ARMOR, CERES, and
Hammurabi. We also provide scripts to automate all three
main evaluations we perform in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Verdict is a verified X.509 certificate validator, and as such,
it does not pose any immediate security, privacy, or ethical
concerns. We also provide a self-contained and compiled

Michael McLoughlin'
Joshua Gancher?

tUniversity of Rochester

Pratap Singh' Rory Brennan-Jones*

Bryan Parno’

SNortheastern University

version of the artifact as a Docker image, which adds another
layer of isolation to avoid changes to your host system.

A.2.2 How to access

The artifact can be accessed via the following URLs:

e Artifact image: https://doi.org/10.5281/zenodo.
15468400

e Main Verdict repository: https://github.com/
secure-foundations/verdict

* Evaluation tools and build scripts of the artifact im-
age: https://github.com/secure-foundations/
verdict-bench

The first Docker image is sufficient for artifact evaluation.

A.2.3 Hardware dependencies

Our artifact image requires an x86-64 machine with at least
16 GiB of RAM and 20 GB of free disk space.

A.2.4 Software dependencies

We recommend using Ubuntu (at least 20.04) with Docker
27.5.1. Newer versions may work too. Your host user must
also be able to use the ——cap-add=NET_ADMIN flag in Docker,
in order to perform the end-to-end evaluation with Rustls.

A.2.5 Benchmarks

In the paper, we use about 10M certificate chains from Certifi-

cate Transparency (CT) logs. For convenience of evaluation,

we only include a sampled subset of 35,000 chains in the

artifact image. You are also welcome (but not required) to use

your own set of certificate chains, and the instructions to do so

are in the README . md file in the evaluation tools repository.
All other datasets are included in the artifact image.


https://doi.org/10.5281/zenodo.15468400
https://doi.org/10.5281/zenodo.15468400
https://github.com/secure-foundations/verdict
https://github.com/secure-foundations/verdict
https://github.com/secure-foundations/verdict-bench
https://github.com/secure-foundations/verdict-bench

A.3 Set-up

From this point onwards, we assume that you are using the
pre-build artifact image (Section A.2.2).

A.3.1 Installation

Download the Docker
verdict-bench-image.tar.gz (Section A.2.2).
load the image by

image
Then

docker load --input verdict-bench-image.tar.gz

Alternatively, you can also pull the image directly from
GitHub for faster access:

docker pull \
ghcr.io/secure-foundations/verdict-bench && \

docker tag \
ghcr.io/secure-foundations/verdict-bench \
verdict-bench

A.3.2 Basic Test

Start the container by:
docker run -it --cap-add=NET_ADMIN verdict-bench

Then run make test to perform all benchmarks but without
multiple samples to reduce noise.

Finally, make figures should display a list of La-
TeX tables corresponding to Figures 6, 7, and 8 in the
paper. The plot for Figure 5 can also be found at
results/performance.pdf. Note that the performance re-
sults may be very noisy and inaccurate at this point, and you
should restart the container and run make eval to obtain
more accurate results (see Section A.4.2).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Verdict’s performance is on par with state-of-the-art
X.509 validators (Chrome, Firefox, OpenSSL) on a large
set of real-world certificates, and it is orders of magni-
tude faster than prior academic work on more trustwor-
thy X.509 validation (ARMOR, CERES, Hammurabi).

(C2): Verdict has high fidelity formal models of Chrome, Fire-
fox, and OpenSSL when compared on the x509-limbo
test suite.

(C3): When integrated into Rustls, Verdict causes negligible
performance overhead in end-to-end HTTPS requests on
popular websites.

(C4): Verdict is a formally verified X.509 certificate validator
with an end-to-end specification.

A.4.2 Experiments

The following experiments are used to justify the major claims
above. In particular, (E1) performs benchmarks and tests to
demonstrate (C1), (C2), and (C3); (E2) builds/verifies Verdict
and involves some human inspection to justify (C4).

Experiment (E1) does not require Internet connection and
all required binaries are included in the Docker image; how-
ever, the experiment (E2) does need network access to down-
load some dependencies like Rust and Verdict’s dependencies.

In all of the following experiments, we assume that the
basic set-up steps (Section A.3) have been done, and that you
are already inside the artifact container.

(E1) [10 human-minutes + 3.5 compute-hours + 1 GB disk]
In this experiment, we perform performance benchmarks and
differential tests to demonstrate claims (C1), (C2), and (C3).

How to: Run make eval. This might take a few hours.

Results: Run make figures to display three LaTeX tables
that should have comparable results to Figures 6, 7, and 8 in
the main paper in terms of the relative performance of the
tools. A PDF file produced at results/performance.pdf
should also contain similar results to Figure 5 in the paper.

Note that since we are testing on a small subset of CT
logs (about 35,000 chains out of the 10 million chains), the
differential testing results in the “CT” section will have much
fewer certificates; although the “Limbo” section should have
similar, and slightly improved results than Figure 7.

Some noise in the performance results (Figures 5, 6, and 8)
is also expected (likely within 10% of relative performance
between tools), due to the smaller data set as well as differ-
ences in the testing environment. However, we expect that the
results still support our claim that Verdict is comparable with
the performance of Chrome, Firefox, and OpenSSL; and that
it is orders of magnitude faster than other academic work.

For more fine-grained results, please see CSV files in the
results folder:

* results/perf-<tool>.csv: performance results of
<tool> on each tested certificate chain, where the
columns denote hash of the leaf certificate, the hostname
being validated, validation result, and finally multiple
samples of the validation time in microseconds.

results/limbo-<tool>.csv: results of running
<tool> on the x509-limbo test suite, where the columns
denote the test name, the expected result (as indicated
by x509-limbo), and the actual result.

e results/end-to-end-{aws-1lc, libcrux}.csv: per-
formance results of simulating HTTPS requests
to popular websites using Rustls with Verdict in-
tegrated. The first column is the domain being
tested, the second column is the X.509 validator
used (default for the built-in validator in Rustls,



verdict-chrome/firefox/openssl are Verdict mod- verdict/target/release/verdict validate \

els of Chrome, Firefox, and OpenSSL). Rest of the -t 1735707600 \
columns are samples of end-to-end request time. chrome \
verdict/verdict/tests/roots.pem \
(E2) [30 human-minutes + 5 compute-minutes] In this verdict/verdict/tests/chains/github.pen

experiment, we build and verify Verdict using Verus, and

. . ; . This should produce output such as:
manually inspect the specifications and proofs of Verdict.

This is to support claim (C4). result: ValidationResult { valid: true, ... }
How to: Run make build-verdict. Note that this re-

quires network access. This command will install Verus and The Verdict library can also be easily used in other Rust

various dependencies, and then verify Verdict using Verus. projects through Cargo:

Results: If everything is successful, Verus has verified
all proofs in Verdict, and produced the final binary at
verdict/target/debug/verdict.

To manually inspect the specifications and proofs in Verdict, .
you can find the main components in these locations: A.6 Version

cargo add verdict \
--git https://github.com/secure-foundations/verdict.git

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

e verdict is the main verified X.509 validation
library. It includes implementations of differ-
ent policies (verdict/src/policy) as well
as the policy-independent validation procedure
(verdict/src/validator.rs). In particular, the
main specification in Figure 2 of the paper can
be found in verdict/src/validator.rs, where
spec_validate_x509_base64 and Query::valid
should be equivalent to the spec_valid_x509 spec
function in the paper.

e Verdict’s formal models of Chrome, Fire-
fox, and OpenSSL X.509 policies can be
found in verdict/src/policy. For example,
verdict/src/policy/openssl.rs contains the
OpenSSL policy written in Verdict’s policy DSL.

» verdict-parser contains the verified parsers and seri-
alizers of X.509 (verdict-parser/src/x509) and var-
ious ASN.1 components (verdict-parser/src/asnl).
The main paper mentions an ASN.1 DSL to au-
tomatically generate verified parsers and serializ-
ers, and an example of this can be found in
verdict-parser/src/x509/tbs_cert.rs (i.e., the
asnl! macro invocation).

A.5 Notes on Reusability

The Docker image came bundled with a built
Verdict frontend binary, which you can find at
verdict/target/release/verdict. You can run
verdict/target/release/verdict --help to see its
usage. Currently, the frontend supports parsing X.509
certificates, validating given certificate chains, and various
utilities to run the evaluation in the main paper.

As an example, verdict/verdict/tests/chains con-
tains some sample certificate chains. You can verify one of
them by running:


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


