
USENIX Security ’25 Artifact Appendix: Let’s Move2EVM

Lorenzo Benetollo*‡§¶, Andreas Lackner*†, Matteo Maffei†¶, Markus Scherer†¶

†TU Wien
‡Ca’ Foscari University of Venice

§University of Camerino
¶Christian Doppler Laboratory Blockchain Technologies for the Internet of Things

A Artifact Appendix

A.1 Abstract

The Move programming language, designed with strong
safety guarantees such as linear resource semantics and
borrow-checking, has emerged as a secure and reliable choice
for writing smart contracts. However, these guarantees de-
pend on the assumption that all interacting contracts are well-
formed—a condition naturally met in Move’s native execution
environment but not in heterogeneous or untrusted platforms
like the Ethereum Virtual Machine (EVM). This work ad-
dresses the challenge of preserving Move’s security guaran-
tees when compiling to EVM.

We provide multiple artifacts to support the claims made
in the paper and to facilitate data reproduction. In particular,
the following artifacts are included:

• Move-to-EVM-Compiler: The source code of our adap-
tations of the original Move-to-EVM Compiler.

• Datasets: The Rosetta and ERC-20 Dataset used in the
evaluation. Due to licensing issues, we cannot provide
data from the Aptos benchmark. However, we provide
scripts to build the set from publicly available sources.

• Supplementary artifacts: Scripts and tools to simplify
running our experiments.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our experiments do not perform any destructive operations
and do not collect any private or sensitive data. To reproduce
the Aptos benchmark used in the paper, we rely solely on
publicly available information. Data scraping is conducted
conservatively to avoid overloading the target system.

*Shared first authorship.

A.2.2 How to access

Our artifacts are publicly available at https://doi.org/10.
5281/zenodo.15591737. The artifact consists of the follow-
ing files:

• aptos_dataset.zip: A zip file containing parts of the
aptos dataset and tools to generate the full dataset.

• docker.zip: A zip file containing additional files
needed to create the Docker image.

• Dockerfile: The Dockerfile to create an image contain-
ing our compiler.

• evaluation.zip: A zip file containing tools and data
to reproduce our results.

• gas_prices.zip: A zip file containing gas prices that
we refer to in the paper.

• lets-move-to-evm.zip: A zip file containing the
source code of our compiler.

• paper_extended.pdf: The extended version of the pa-
per.

• playground.zip: A playground to compile Move pack-
ages in general.

• README.md: Additional documentation on how to run
the compiler in general.

In the following descriptions, we assume that you have
downloaded all files of the artifact and unzipped the (top-
level) zip files mentioned above.

A.2.3 Hardware dependencies

System Requirements Artifacts can be run on both x86
and ARM architectures. We recommend 8 GB of RAM and
at least 20 GB of available disk space.

https://doi.org/10.5281/zenodo.15591737
https://doi.org/10.5281/zenodo.15591737


A.2.4 Software dependencies

Operating System Experiments were conducted on Ubuntu
24.04. Other systems might work, but may require additional
adjustments.

Docker The compiler runs inside a Docker container. All
experiments were tested with Docker version 27.5.1, although
newer versions will also work. To download the latest ver-
sion, we refer to the official documentation: https://www.
docker.com/get-started/.

Nix We use the Nix package manager for parts of our evalua-
tion. We refer to https://nixos.org/download/ for instal-
lation instructions. To reproduce our environment, we suggest
version 2.18.1 or higher.

Avoiding Nix If you have the Zstandard CLI installed and
Python 3 with the requests package, you might still be able
to run our experiments. However, please note that we have
not tested this setup.

A.2.5 Benchmarks

The benchmark datasets for Rosetta and ERC-20 are included
in the artifact. To retrieve the Aptos dataset, we refer to A.3.1
for detailed instructions.

A.3 Set-up
A.3.1 Installation

Download files and install dependencies First, down-
load the artifact from https://doi.org/10.5281/zenodo.
15591737 in any directory and unzip the zip files as described
before. From now on, we assume that your working directory
looks as follows (assuming you have deleted unzipped zip
files):

aptos_benchmark
docker
evaluation
gas_prices
lets-move-to-evm
playground
Dockerfile
paper_extended.pdf
README.md

Preparing benchmarks For the Aptos benchmark, due to
licensing issues, we cannot directly provide the source files.
Anyhow, we provide scripts to download and patch the files:

cd aptos_benchmark
nix-shell
./build_eval.bash

Note that two modules (offer and universal_config) will
be skipped. This is as expected and relates to compiler lim-
itations described in the paper. The results of this script are
copied to the evaluation folder. After that, you can leave
the nix shell again by pressing CTRL+d.

Building the Docker image The Docker image contains
the compiler and all its dependencies. Building the Docker
container can last up to 30 minutes. Note that we expect you
to execute the next line in the root folder of your downloaded
artifact (where the Dockerfile is located)

docker build -t mv2evm .

This should build a new Docker image containing the com-
piler. You can verify whether everything was successful by
running docker image ls. The list of images should con-
tain mv2evm.

A.3.2 Basic Test

After successfully running the previous steps, you can execute
the following command to see if everything worked correctly:

./evaluation/attach.bash <COMPILER> <DOCKERIMG>

For <DOCKERIMG> use mv2evm as created before. For
<COMPILER>, test it for each of the values IRM, ORIGINAL,
SOL. Executing the script attach should open a shell (inside
the created Docker container). Note that it might take up to
one minute until the Docker container is started.

Inside the new shell you should be able to execute the com-
mand move --help which should return a list of available
command-line-options. You can leave the Docker container
now by typing CTRL+d.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1) From Section 2.3: The original compiler is vulnerable
to the bugs referred to as C1, C2, and C4 in the paper
(names unfortunately collide with the Major Claims in
this section). This is proven by (E1).

(C2) From Section 4.2 §ERC-20: When using Move in an
unidiomatic way (as proposed by the original compiler),
gas costs nearly double with respect to the ERC-20 ver-
sion of Solidity (C2.1). Using Move as intended leads to
an overhead of at most 42% (C2.2) when using the (in-
secure) original compiler. Compiled with our compiler,
we get an overhead of at most 50% (C2.3), where only
15% are caused by our changes in the compiler. This can
be proven by (E2).

(C3) From Section 4.2 §Rosetta: For the Rosetta bench-
mark, all claimed contracts (see Figure 7) can be com-
piled by our compiler (C3.0). On average, the overhead

https://www.docker.com/get-started/
https://www.docker.com/get-started/
https://nixos.org/download/
https://doi.org/10.5281/zenodo.15591737
https://doi.org/10.5281/zenodo.15591737


compared to the original compiler is less than 49,000
(C3.1). Compared to Solidity, it is less than 98,000. This
is proven by (E3).

(C4): From Section 4.2 §Aptos: For the Aptos benchmark,
all claimed contracts (see Figure 8) can be compiled
by our compiler (C4.0). The overhead compared to the
original compiler is on average around 12,000 of gas
(C4.1). This is proven by (E4).

A.4.2 Experiments

NOTE: In this section, the working directory will be the
evaluation directory!
(E0): Execute all tests [30 human-minutes + 10 compute-

minutes]: This experiment is the basis for most of the
other experiments. It must be repeated for each of the
three compilers. We use <COMPILER> to indicate the
values IRM, SOL, and ORIGINAL.
Preparation: Attach to the Docker container by typing
./attach.bash <COMPILER> mv2evm.
Execution: Execute the script ./evaluate.bash that
should be placed in the current working directory of the
just-opened shell inside the Docker container.
Results: The script executes test cases. There must not
be any failing test cases (failing test cases would be noted
at the end of the output). Also, typing ls ./results
must yield a non-empty list of csv files. Warnings are
expected and can be ignored.

(E1): Vulnerability Check [<10 human-minutes + <10
compute-minutes]:
Preparation: Attach to the Docker container by typing
./attach.bash ORIGINAL mv2evm
Execution: Execute the script ./vul_check.bash that
should be placed in the current working directory of the
just-opened shell inside the Docker container.
Results: The script should execute three tests. All of
them must be passed (indicated by 3 passing). Com-
piler warnings are expected and can be ignored.

(E2): ERC-20 [30 human-minutes + <10 compute-minutes]:
Preparation: First execute (E0). Then leave the Docker
container (ctrl+d). You should now be in folder
evaluation.
Execution: Execute the script ./e2.bash.
Results: We expect the following output: 88% for
(C2.1); 28% for (C2.2); 36% for (C2.3); and 20% for
(C2.4). We note that numbers are slightly better than
those presented in the paper since the Solidity version
performs worse in our test environment. Other numbers
are unchanged (compare output with Figure 6 of the
paper).

(E3): Rosetta [30 human-minutes + <10 compute-minutes]:
Preparation: First execute (E0) if not done previously.
Then leave the Docker container (ctrl+d). You should
now be in folder evaluation.

Execution: Execute the script ./e3.bash.
Results: We expect the following output: 35,482 for
(C3.1); and 89,942 for (C3.2). Regarding C3.0, the script
should output results for all contracts listed in Figure 7.
We note that the numbers for IRM slightly differ from
the paper due to fixes. However, in case of increasing
costs, the increase should be smaller than 3% (see last
column printed by the script).

(E4): Aptos [30 human-minutes + <10 compute-minutes]:
Preparation: First execute (E0) if not done previously.
Then leave the Docker container (ctrl+d). You should
now be in folder evaluation.
Execution: Execute the script ./e4.bash.
Results: We expect a value of 12,174 for C4.1. Regard-
ing C4.0, the script should output results for all contracts
listed in Figure 8. Numbers should match those of the
paper up to the nearest thousand (as represented in the
paper).

A.5 Notes on Reusability
For the reproducibility of the data mentioned in the paper, we
only need a small part of the Aptos dataset. However, in the
README.md of the artifact, we provide detailed instructions
on how to retrieve the whole dataset.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


