ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
Found in Translation: A Generative Language Modeling Approach to
Memory Access Pattern Attacks

Grace Jia
Yale University

A Artifact Appendix

A.1 Abstract

Confidential computing environments (CCEs) offer a conve-
nient way for privacy-sensitive applications to ensure confi-
dentiality and integrity for data and computations offloaded
to the cloud. However, the Operating System (OS) stack is
still controlled by the cloud provider and manages key system
services such as memory paging. Several recent works have
demonstrated that these services can leverage the side chan-
nel of page access patterns to reconstruct the application’s
private data. However, prior attacks are limited to identifying
accesses to a specific application-level object by a unique
access or sequence of accesses to OS-level pages. Moreover,
they tend to ignore correlations in access patterns — a com-
mon occurrence in most real-world applications — leaving
untapped critical side channel information for improving at-
tack accuracy.

We propose a novel attack approach, named Found in Trans-
lation (F1T), that leverages access correlations across pages
in cloud applications using a generative language model. Our
key insight is that there are strong parallels between appli-
cation page access patterns and grammatical structures in
natural languages, making language modeling an excellent
fit for reconstructing sensitive application data with high ac-
curacy. Our major results are the high accuracy of the attack
compared to prior state-of-the-art approaches in predicting
object-level access sequences on three privacy-sensitive ap-
plications: DLRM inference for recommendations, LLM in-
ference for medical diagnosis, and HNSW index lookup for
semantic search. We also include results on our attack’s ro-
bustness against errors in the recorded page access sequences
and the latency that OS-level tracking and recording page
accesses add to the execution times of the victim applications.

A.2 Description & Requirements

This artifact contains the following: (i) the source code to
train and evaluate the language model used in FIT, along
with code to run the compared baselines — the I[HOP attack
and the Naive Bayes classifier; (ii) the preprocessed datasets

Alex Wong
Yale University

Anurag Khandelwal
Yale University

used in our evaluation to train and test all compared attacks,
FIT’s trained model weights for each evaluated application,
and our measurements of application execution times with
and without page access tracking; (iii) the scripts required to
reproduce our experiments and a comprehensive README
with instructions to set up and run the FIT attack pipeline.

A.2.1 Security, privacy, and ethical concerns

This artifact does not take destructive steps, nor does it disable
security mechanisms. It does not pose any privacy or ethical
concerns to evaluators.

A.2.2 How to access

Our artifact is available on Zenodo and can be accessed at
https://doi.org/10.5281/zenodo.15602651.

A.2.3 Hardware dependencies

We evaluated our FIT attack using a single NVIDIA GeForce
RTX 4090 GPU; however, we expect FIT to run on any
NVIDIA GPU with at least 16 GB of memory. We also pro-
vide an option for CPU-only platforms to run our experiments
on a smaller subset of test samples.

The compared attacks, [IHOP and Naive Bayes, require
only CPU hardware to evaluate. We have previously run their
experiments on AMD EPYC 7302P 16-core processor, as
well as Apple M2 Pro 12-core processor with 16 GB RAM.

A.2.4 Software dependencies

We conducted experiments involving FIT on Ubuntu 24.04.1
LTS. Experiments involving compared attacks have been con-
ducted on Ubuntu 22.04.2 LTS and macOS Sonoma 14.6.1.
All attacks require Python3, and the plotting script requires
LaTeX to be installed. We use Conda for environment man-
agement and document all required packages in the file ‘re-
quirements.txt’ in the root directory of the artifact.


https://doi.org/10.5281/zenodo.15602651
https://www.latex-project.org/get/

A.2.5 Benchmarks

We evaluate our compared attacks on page access traces col-
lected from three applications: a Deep Learning Recommen-
dation Model (DLRM), a Large Language Model (LLM),
and a Hierarchical Navigable Small World index (HNSW);
more details about the datasets can be found in our paper. All
required data and model weights are provided on Zenodo.

A.3 Set-up

We assume that the system has at least 22 GB of available disk:
17 GB for the artifact, and 5 GB for the Conda environment.
A.3.1 Installation

We recommend using Conda to set up our experimental en-
vironment. If Conda is not installed on the system, you can
quickly set up Miniconda following these instructions. You
may need wget or curl to download the installer.

First, create a new Conda environment with Python 3.12:

conda create -n fit -y python=3.12
conda activate fit

Next, install the required dependencies:

pip install -r requirements.txt

A.3.2 Basic Test

The following script runs FIT, IHOP, and the Naive Bayes
baseline on a single test sample from our LLM dataset:

bash scripts/run_basic_test.sh

We expect the tests to take around 5 minutes in total. Each

test populates the ‘data/llm/eval’ directory with a results file —

respectively, ‘llm_nitro.csv’, ‘nb_llm.csv’, and ‘thop_llm.pkl’.
Before running our experiments, please remove these files
with rm data/llm/eval/*.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): FIT achieves significantly lower hamming distances
(i.e., more accurate predictions) than the compared Naive
Bayes and IHOP baselines across all three use cases,
DLRM, LLM, and HNSW. This is demonstrated by ex-
periments (E1), (E2), and optionally (E3), the results of
which are shown in Figure 7.

(C2): Attack efficacy improves for all three attacks given a
one-to-one mapping of OS-level pages and application-
level objects, but FIT is still more accurate than ITHOP.
This is also demonstrated by experiments (E1), (E2), and
(E3), and the relevant results are shown in Figure 8.

(C3): FIT is robust against measurement errors in the input
page access traces. This is demonstrated by experiment
(E4), the results of which are shown in Figure 9.

A.4.2 Experiments

Preparation: Before running each script, set the current di-
rectory to the root directory of the artifact and activate the
fit Conda environment.

Results: If successful, each experiment will save its results in

directories corresponding to each use case: ‘data/dlrm/eval/’,

‘data/llm/eval/’, and ‘data/hnsw/eval/’.

(E1): [FIT Attack Efficacy] [3.5 GPU compute-hours]: Runs
the inference phase of FIT on test samples from the three
use cases for (C1) and the one-to-one use case for (C2).
Execution: To run the experiment with the paper’s test
dataset sizes for DLRM, LLM, and HNSW:

bash scripts/run_fit.sh \

100000 50000 2600
If only CPU is available, we recommend running the
DLRM and LLM experiments with fewer test samples:

bash scripts/run_fit.sh \

1000 5000 2600 --use-cpu
Results: The results of the FIT experiment are saved as
the following files in the result directories corresponding
to their use case: ‘dlrm_nitro.csv’, ‘dlrm_sgx.csv’,
‘llm_nitro.csv’, ‘llm_sgx.csv’, ‘hnsw_nitro.csv’,
‘hnsw_sgx.csv’ for (C1), and finally ‘dlrm_1_1.csv’ for
(C2). Each row of the CSV contains an access sequence
predicted by the FIT model and the corresponding
ground-truth target sequence. After collecting the results
of (E2), the following script can reproduce Figures 7 and
8 from our paper and save them to the ‘plots’ directory:

python3 scripts/plot.py —--fig 7

python3 scripts/plot.py --fig 8

(E2): [Naive Bayes Attack Efficacy] [1.5 CPU compute-
hours]: Runs the Naive Bayes baseline on the train and
test data of the three use cases for (C1) and the one-to-
one use case for (C2).

Execution: bash scripts/run_nb.sh

Results: Like (E1), results of the Naive Bayes runs
are saved in the following CSV files: ‘nb_dlrm.csv’,
‘nb_llm.csv’, ‘nb_hnsw.csv’, and ‘nb_dlrm_1_1.csv’.
Each row of each CSV is a tuple of the predicted and
target sequences.

(E3): [IHOP Attack Efficacy] [56 CPU compute-hours]:
Runs the THOP attack on the train and test data of the
three use cases (C1) and the one-to-one use case (C2).
The compute-hours are estimated based on prior runs
with the AMD setup, but we have observed an up to 2x
speedup on the Apple M2 Pro.

Execution: bash scripts/run_ihop.sh
Results: Each run of IHOP outputs a list of pre-
dicted and target sequences, which are saved as


https://www.anaconda.com/docs/getting-started/miniconda/install#quickstart-install-instructions

the following pickle files in the result directories:
‘thop_dlrm.pkl’, ‘ithop_llm.pkl’, ‘thop_hnsw.pkl’, and
‘thop_dlrm_1_1.pkl’. As this experiment is relatively
time-intensive, our artifact provides results from our
runs of IHOP in the parent directories ‘data/dlrm/’,
‘data/llm/’, and ‘data/hnsw/’. These provided results are
automatically used by the plotting script if there is insuf-
ficient time to run (E3).

(E4): [FIT Practical Considerations] [6.5 GPU compute-
hours]: Runs the inference phase of FIT on test samples
from the three use cases with varying measurement error
rates: 1%,3%,5%,7%, and 10% (C3).

Execution: To run the experiment:

bash scripts/run_fit_sensitivity.sh
Like (E1), CPU-only options are available:

bash scripts/run_fit_sensitivity.sh \

1000 5000 2600 --use-cpu
Results: The results of each run of FIT inference are
saved as a CSV, with each row containing the access se-
quence predicted by the FIT model and the correspond-
ing ground-truth target sequence. The following script
can then recreate Figures 9 and 10:

python3 scripts/plot.py --fig 9

python3 scripts/plot.py --fig 10

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


