
USENIX Security ’25 Artifact Appendix: Unlocking the Power of
Differentially Private Zeroth-order Optimization

for Fine-tuning LLMs

Ergute Bao∗, Yangfan Jiang†, Fei Wei∗, Xiaokui Xiao†, Zitao Li∗, Yaliang Li∗, Bolin Ding∗
∗Alibaba Group, †National University of Singapore

A Artifact Appendix

A.1 Abstract
The main idea of our proposed method, DP-AggZO, is to
aggregate multiple zeroth-order estimates for the exact gra-
dients, computed over independent perturbation vectors (ran-
dom Gaussian vectors), before enforcing differential privacy
(i.e., artificial clipping, taking the average, and then inject-
ing random DP noises). Compared with the vanilla DPZO
(or DPZero), which is effectively a degenerated version of
DP-AggZO with only one zeroth-order estimate, our DP-
AggZO achieves much better utility under the same privacy
constraints. Our DP-AggZO also outperforms the state-of-
the-art DP-AdamW in some cases. This artifact is used for
validating the above claim.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Security, privacy, and ethical concerns are not applicable to
this artifact as the models and datasets are publicly available.

A.2.2 How to access

Access via Zenodo in https://zenodo.org/records/
15594622.

A.2.3 Hardware dependencies

A workstation or cloud computing node with a GPU (pre-
ferrably with GPU memory larger than 20 GB), e.g., RTX
4090 GPU 24GB, or above (larger GPU memory is needed if
run larger models, e.g., OPT 6.7B).

A.2.4 Software dependencies

Linux system Ubuntu 22.04.4, installed with python 3.9.18,
with torch==2.4.0+cu121, transformers==4.28.1, and opa-
cus==1.4.0. More on enviroments can be found in the file
named “environments.yml” provided.

A.2.5 Benchmarks

We evaluate on RoBERTa (355M) 1, which is a pretrained
model on English language using a masked language model-
ing (MLM) objective, and OPT-1.3B and OPT-6.7B 2, which
are parts of the a suite of decoder-only pre-trained transform-
ers ranging from 125M to 175B parameters.

In the provided script, there are on six datasets for different
classification tasks, including SST-2 and SST-5 3 for senti-
ment analysis (i.e., determine if the given text is positive/neg-
ative), SNLI 4, MNLI 5, and RTE 6 for natural language infer-
ence (i.e., determine if the given premise and hypothesis are
in the relationship of entailment/neutral/contradiction), and
TREC 7 for topic assignment (i.e., determine which topic the
given question falls under). For each dataset, we generate 512
samples for each class for training.

For larger models OPT-1.3B and OPT-6.7B that require
more resources to fine-tune, we focus on one classification
task SST-2 and one generation task SQuAD 8 (the fine-tuned
model answers to a given question containing relevant con-
texts). For each dataset, we use 1000 samples for training.

A.3 Set-up
A.3.1 Installation

Please Use the file named “environments.yml” provided to in-
stall the environment using pip or conda. For testing RoBERTa
(355M), go to folder roberta and install the dataset as specified
in the readme file provided.

A.3.2 Basic Test

After installation of the environment and datasets, to test the
functionality, run the following script in bash.

1https://huggingface.co/FacebookAI/roberta-large
2https://huggingface.co/facebook/opt-1.3b
3https://aclanthology.org/D13-1170/
4https://aclanthology.org/D15-1075/
5https://aclanthology.org/N18-1101/
6https://dl.acm.org/doi/10.1007/11736790_9
7https://aclanthology.org/L00-1018/
8https://aclanthology.org/D16-1264/

https://zenodo.org/records/15594622
https://zenodo.org/records/15594622
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/facebook/opt-1.3b
https://aclanthology.org/D13-1170/
https://aclanthology.org/D15-1075/
https://aclanthology.org/N18-1101/
https://dl.acm.org/doi/10.1007/11736790_9
https://aclanthology.org/L00-1018/


CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0208 STEP=500 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=6e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

This script takes around 80 minutes to run on a RTX 4090
GPU and gives a test accuracy around 72%, which is much
better than the utility of the original DPZO/DPZero under the
same privacy constraint (around 65%, or refer to Table 2 on
Page 9 of their original paper 9).

Results on other datasets can be obtained by changing the
“TASK” parameter. We also provided more examples in the
“readme” file.

A.4 Evaluation workflow
A.4.1 Major Claims

We make two major claims.
(C1): Our DP-AggZO can outperform the vanilla DPZero/D-

PZO in terms of test accuracy under the same privacy
constraints.

(C2): Our DP-AggZO can sometimes outperform DP-
AdamW in terms of test accuracy under the same privacy
constraints.

A.4.2 Experiments

C1-1: Reproducing DP-AggZO results for MNLI with privacy
level ε = 2. You can run the DP-AggZO experiments for the
MNLI task directly using the following commands:

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=1000 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=8e-5 \

DPZERO_THRESHOLD=5 TASK="MNLI" bash examples
/dpaggzo.sh

or

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=1000 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=5e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

Expected outcome:

• Compute time: 5 hours on RTX 4090, 14 hours on RTX
A5000.

• Test accuracy is ∼74% on RTX A5000 or H20 GPU;
∼71% on RTX 4090 GPU.

9https://arxiv.org/pdf/2310.09639

• Significantly better than vanilla DPZO/DPZero under
the same privacy level (see below).

C1-2: Reproducing DP-AggZO results with K = 1 (equiv-
alent to DPZero/DPZO baseline) with privacy level ε = 2.

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=5000 \

SEED=42 NUM_DIRECTION=1
RANDOM_DIRECTION_SEED =100 LR=2e-6 \

DPZERO_THRESHOLD =200 TASK="MNLI" bash
examples/dpaggzo.sh

Expected outcome:

• Compute time: 40 minutes on RTX 4090

• Test accuracy: 65% on RTX 4090 GPU, or can refer to
the original paper: arxiv.org/pdf/2310.09639

Combining the results of C1-1 and C1-2, we can verify that
DP-AggZO outperforms the vanilla DPZO/DPZero under the
same privacy constraints.
C2-1: Reproducing DP-AggZO results for MNLI with privacy
level ε = 0.5. You can run the DP-AggZO experiments for
the MNLI task directly using the following command:

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS
=0.5 DP_SAMPLE_RATE =0.0416 STEP=500 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=2e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

Expected outcome:

• Compute time: 3 hours on RTX 4090, 7 hours on RTX
A5000.

• Accuracy: ∼63.5% on H20 and A5000 GPUs

• Better than DP-AdamW under the same privacy level
(∼ 62%) (see below).

C2-2: Reproducing the result on DP-AdamW using the fol-
lowing fommand:

CUDA_VISIBLE_DEVICES=0 DP_SAMPLE_RATE =0.0416
STEP=1000 SEED=42 LR=1e-4 \

DPSGD_THRESHOLD=10 DPSGD_PRIVACY_EPS =0.5
DPSGD_PRIVACY_DELTA=1e-5 \

TASK="MNLI" bash examples/dpsgd.sh

The results from C2-1 and C2-2 demonstrate that DP-AggZO
can outperform DP-AdamW the same privacy constraints,
but the improvement is not as significant as that for DPZO/D-
PZero. We refer to the “readme” file provided for more exam-
ples.

To use this artifact beyond the models presented in

https://arxiv.org/pdf/2310.09639
https://arxiv.org/pdf/2310.09639


A.5 Notes on Reusability
To use this artifact beyond the models presented in this paper,
we would recommend refactoring the code based on the latest
implementation and algorithms of the model of interest. Some
functions/libraries may become obsolete in the future while
the general algorithmic idea of using multiple independent
zeroth-order estimates to reduce clipping error could still
apply.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


