ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security 25 Artifact Appendix: GradEscape: A Gradient-Based
Evader Against Al-Generated Text Detectors

Wenlong Meng® Shuguo Fan'
Yuanchao Zhang*
TZhejiang University

* Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation

A Artifact Appendix

A.1 Abstract

We proposed GradEscape, the first gradient-based evader for
attacking Al-generated text (AIGT) detectors. GradEscape
overcomes the undifferentiable computation problem, caused
by the discrete nature of text, by constructing weighted embed-
dings for the detector input. It then updates the evader model
parameters using feedback from victim detectors, achieving
high evasion rates with minimal text modifications.

This artifact is used to evaluate GradEscape against a range
of detectors. It includes code for reproducing GradEscape as
well as three baseline evaders. We provide a Python library
that makes it easy to reproduce existing detectors and evaders.
The artifact also contains trained evader models and scripts
for replicating our experiments on two real-world AIGT de-
tectors, namely Sapling and Scribbr. To help mitigate the risks
posed by AIGT evaders, we showcase that our proposed active
paraphrase defense can effectively reduce evasion rates.

A.2 Description & Requirements

We package the artifact into two separate files:
GradEscape.zip and Usenix-AE.zip. GradEscape.zip
contains the source code; while Usenix-AE.zip contains
evaluation datasets and trained models. This section describes
the minimal hardware and software requirements needed to
run the artifact.

A.2.1 Security, privacy, and ethical concerns

Our attacks target exclusively at the target AIGT detector.
Therefore, there is no security risk for evaluators. All bench-
mark datasets are sourced from open corpora, so there are no
privacy concerns. Regarding real-world experiments, Sapling
and Scribbr have updated their services with stronger models.
Therefore, our artifact poses no significant risk to these two
online platforms.

Chengkun Wei
Zhikun Zhang"

'Vrije Universiteit Amsterdam

Min Chen! Yuwei Li®®
Wenzhi Chen’

“National University of Defense Technology
#Mybank, Ant Group

A.2.2 How to access

Our artifact is available through Zenodo. The artifact
can be accessed at https://doi.org/10.5281/zenodo.
15586856.

A.2.3 Hardware dependencies

Two Nvidia RTX A6000 GPUs are the minimum GPU re-
quirement to run the artifact. We recommend at least a 20-core
CPU, 32 GB RAM, and 256 GB of free disk space.

A.2.4 Software dependencies

* OS: Ubuntu 20.04+. A macOS machine is needed to
open Scribbr webarchive file. If you encounter a security
warning when opening the webarchive file, please go to
Settings, Privacy & Security and click open anyway.

* Package Manager: Conda.

* API Key: A Sapling API key is required to run Sapling
experiments. Conducting these experiments entails
money costs.

A.2.5 Benchmarks

Our evaluation requires four datasets: GROVER, HC3,
GPA, and GPTWiki. GROVER and GPA are provided in
Usenix-AE.zip. Our code will automatically download and
manage HC3 and GPTWiki. Some pre-trained victim detec-
tors are also included in Usenix-AE. zip.

A.3 Set-up

The setup utilizes Conda for environment management.

A.3.1 Installation

Install Main Environment. Download GradEscape.zip
and Usenix-AE.zip. Unzip and place them in the same di-
rectory. Then, use the following commands to create an envi-
ronment:

https://doi.org/10.5281/zenodo.15586856
https://doi.org/10.5281/zenodo.15586856

conda create -n ge python=3.10

conda activate ge

cd GradEscape

./install.sh

cp src/AIGT/.config.yaml src/AIGT/config.yaml

Generate Word Similarity Matrix. Perturbation-based
evaders rely on a word similarity matrix to select synonyms.

cd Usenix-AE

git clone

< https://github.com/nmrksic/counter-fitting.git
cd counter-fitting/word_vectors/

unzip counter-fitted-vectors.txt.zip

python ../../../GradEscape/tools/comp_cos_sim_mat.py
— counter-fitted-vectors.txt

Then edit config.yaml to set the correct data_dir and
counter_fitting_path.

Create vLLM Environment. We need vLLM for fast para-
phrasing. Since vLLM has complex dependencies, we create
a new environment specifically for vLLM.

conda create -n vllm python=3.10

conda activate vllm

cd GradEscape

pip install -r paraphrase_requirements.txt

Our artifact mainly runs on ge; v11lm is only used for para-
phrase defense.

A.3.2 Basic Test

We provide a simple test that trains a detector using AIGT.
python basic_test.py

If you see “Test finished successfully!”, it means the installa-
tion was successful.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GradEscape achieves higher evasion rates than state-
of-the-art evaders under the same text quality require-
ment. This is proven by the experiment (E1) described
in Section 6.2 whose results are illustrated in Figure 3
and Figure 4.

(C2): GradEscape is effective against real-world commer-
cial AIGT detectors. This is proven by experiment (E2)
described in Section 6.6 whose results are reported in
Table 4 and illustrated in Figure 20 and Figure 21.

(C3): Our proposed potential defense can reduce evasion
rates below 0.2 against multiple evaders. This is proven
by experiment (E3) described in Section 7 whose results
are illustrated in Figure 11.

A.4.2 Experiments

(E1): [Verify Evasion Effectiveness] [5 human-minutes + 1
compute-hour]:
How to: Navigate to examples directory; activate ge
environment; execute evader training script in scripts.
The evasion rate and text quality metrics will be printed
on the shell.
Preparation: None.
Execution: Navigate to examples directory and acti-
vate ge:
cd examples
conda activate ge

Then execute the evader training script:
./scripts/train_evader_roberta_grover.sh

Results: After the program finishes running, the evasion
rate and text quality metrics (perplexity, cosine similarity,
GRUEN, and ROUGE) will be printed to the terminal.
Evaluators can compare these results with the first row
of Figure 3. For ease of reference, we provide details of
text quality metrics in Table 1.

Table 1: Text quality metrics summary. Expected refers to
typical value ranges on GROVER; Print % indicates whether
the metric is displayed as a percentage.

Metric

Range Expected Larger Better Print %

Perplexity [1,4) [10,40] No No
Cos-sim [—1,1] [0.95,1.00] Yes No
GRUEN [0,1] [0.6,0.8] Yes No
ROUGE [0,1] [0.8,1.0] Yes Yes

(E2): [Real-world Case Studies] [5 human-minutes + 30
compute-minutes]:
How to: Set your Sapling API key environment parame-
ter; run the two real-world case study Jupyter Notebooks.
Evaluators may open Scribbr.webarchive to verify
Scribbr results.
Preparation: A Sapling API key and a macOS machine
for Scribbr verification.
Execution: Set your Sapling API key:
export SAPLING_API_KEY=<your_api_key>

Run real_world_demo_sapling.ipynb and
real_world_demo_scribbr.ipynb. The execu-
tion environment is ge.

Results: The Sapling results will be printed in its
Jupyter Notebook. Evaluators can compare the printed
results with Figure 20 and Table 4. Verifying Scribbr
results requires copying the output into the website
rendered by Scribbr.webarchive. The Scribbr results
should be the same as Figure 21.

(E3): [Paraphrase Defense Experiment] [5 human-minutes
+ 2 compute-hours]:
How to: Navigate to examples direc-
tory. First, use v1lm environment to run
paraphrase_defense_grover.sh. Then, activate ge
and run eval_paraphrase_defense_grover.sh. It
will generate a figure in the current directory named
paraphrase_defense_grover.pdf.
Preparation: None.
Execution: Navigate to examples:
cd examples

Run paraphrase:
conda activate vllm
./scripts/paraphrase_defense_grover.sh

Train a new detector and evaluate the defense:
conda activate ge
./scripts/eval_paraphrase_defense_grover.sh

Results: The program will generate a figure named
paraphrase_defense_grover.pdf in examples/.
This figure illustrates evasion rates before and after
applying our defense. Evaluators can compare the
generated figure with Figure 11 in our paper.

A.5 Notes on Reusability

We implement AIGT in a reusable way. All configurations,
including datasets, detectors, and evaders, are extracted in
arguments.py. Followers can replicate existing AIGT detec-
tors and evaders with little effort. The user interface of detec-
tors and evaders is designed in a unified and HuggingFace-like
way. Followers can also write their own detectors and evaders
in detectors/ and evaders/, respectively.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

