ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security 25 Artifact Appendix
ELFuUzz: Efficient Input Generation via LLM-driven Synthesis Over
Fuzzer Space

Chuyang Chen
The Ohio State University
chen.13875@osu.edu

A Artifact Appendix

This artifact appendix is a self-contained document that
describes the roadmap for the evaluation of the artifacts of the
paper “ELFuzz: Efficient Input Generation via LLM-driven
Synthesis Over Fuzzer Space.” It includes the hardware,
software, and configuration requirements for the evaluation,
as well as the process for reproducing the results and claims
presented in the paper.

The artifacts have acquired the “artifact available” and
“artifact functional” badges after the artifact evaluation. The
full replication experiments for the “artifact reproduced”
badge were not finished within the one-month time span of
the artifact evaluation process due to the requirements of
a significant amount of time and substantial computational
resources. However, our testing shows that the artifacts
function well to reproduce all the results in the paper
with enough time and computational resources provided.
Furthermore, we will continue to improve the artifacts for
better usability and bug fixes after the artifact evaluation.

A.1 Abstract

The artifacts contain the implementation of ELFUZz, the
source code of the benchmarks and baselines compared with
ELFuUzz in the evaluation, the evaluation results, and the
data required to reproduce the evaluation. It also includes a
Docker image that preserves the environment and setups of
the evaluation to facilitate one-touch replication.

A.2 Description & Requirements

This section outlines the hardware and software requirements
necessary to recreate the experiment environment and setups
described in the paper, as well as the steps to acquire the
benchmarks and baselines used in the evaluation.

A.2.1 Security, privacy, and ethical concerns

The artifact does not perform any operations that may compro-
mise the security or privacy of the evaluators who execute it.

Brendan Dolan-Gavitt
New York University
brendandg @nyu.edu

Zhiqgiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

A.2.2 How to access

The replication package, containing the code and data, is
published on Zenodo. The download link of the version at the
time of artifact evaluation is https://doi.org/10.5281/zenodo.
16741080. Updated versions will be hosted at https://doi.org/
10.5281/zenodo.15833146. The source code of ELFUZZ and
the replication package is developed in the GitHub repository
at https://github.com/OSUSecLab/elfuzz.

A.2.3 Hardware dependencies

The experiments require a GPU with 26 GiB VRAM and
CUDA support to run a local CodeLlama-13B model. The
intermediate data and results produced or downloaded by
the experiments will occupy approximately 100 GiB of disk
space. In our evaluation, we use 30 processes to accelerate
the experiments. It is recommended that the evaluators’
machines be equipped with CPUs with at least this number
of cores. Fewer CPU cores do not affect the results of the
experiments, but a longer time to finish the experiments
should be expected. The specific GPU and CPUs used in the
original evaluation are one NVIDIA H100 Tensor Core GPU
and two AMD EPYC 7251 CPUs.

A.2.4 Software dependencies

The experiments do not depend on a specific operating
system. A Docker installation that is compatible with version
24.0.7 is required. The host machine should also have the
CUDA toolkit installed.

A.2.5 Benchmarks

Benchmarks used in the evaluation will be automatically
cloned from their official Git repositories or downloaded
from the official sites during the experiments. Dockerfiles
from the Fuzzbench project! and the OSS-Fuzz project?
are modified for replicable building environments for the
six benchmarks other than cvc5. The Dockerfile for cvce5 is
implemented from scratch. All Dockerfiles are included in
the source code tarball of the artifacts.

Uhttps://github.com/google/fuzzbench
Zhttps://github.com/google/oss-fuzz


mailto:chen.13875@osu.edu
mailto:brendandg@nyu.edu
mailto:zlin@cse.ohio-state.edu
https://doi.org/10.5281/zenodo.16741080
https://doi.org/10.5281/zenodo.16741080
https://doi.org/10.5281/zenodo.15833146
https://doi.org/10.5281/zenodo.15833146
https://github.com/OSUSecLab/elfuzz
https://github.com/google/fuzzbench
https://github.com/google/oss-fuzz

A.3 Setup

This section describes how to set up and configure the environ-
ment to replicate the evaluation. It also includes instructions
on the functionality validation of the replication package.

A.3.1 Installation

First, follow the official instructions® to install Docker. Then,
set up the core pattern in the host machine as required by
AFL++ later. Hereafter, “$” indicates user inputs, and *“>”
indicates program outputs.

$ echo core > /proc/sys/kernel/core_pattern
> ..

Now, import the Docker image and launch the container:

$ zstd -d elfuzz_docker_<timetag>.tar.zst

$ docker load --input elfuzz_docker_<timetag>.tar

$ mkdir -p /tmp/host

$ docker run --storage-opt size=100G \
-—cpus 30 \
--add-host=host.docker.internal:host-gateway \
-v /tmp/host:/tmp/host \
-v /var/run/docker.sock:/var/run/docker.sock \
--name elfuzz \
-it ghcr.io/osuseclab/elfuzz:25.07.2

The commands should lead you into the container where the
experiments will happen.

A.3.2 Initilizing the environment

After entering the Docker container, run the following com-
mands to enable sibling containers.

$ sudo chown -R appuser:appuser /tmp/host/

$ elfuzz setup

> ..

$ exit
The two commands will exit the container. Now, restart the
container for the settings to take effect.

$ start -ai elfuzz

Then, the following command will download all the data

files from Zenodo and place them in the correct locations.

$ elfuzz download
You also need to configure your Hugging Face token:

$ elfuzz config --set tgi.huggingface_token <YOUR_TOKEN>

A.3.3 Functionality Validation

After initializing the environment, you can run mini-versions
of the experiments presented in the paper to validate that
all of them function well. These commands adopt the
same settings as the original experiments, but decrease the
parameters such as time limits and the number of evolution
iterations for quick validation. Each command can take 5
minutes to 2 hours to complete. §A.4 will give detailed
explanations of these commands.

$ elfuzz synth -T fuzzer.elfuzz \
--use-small-model \
--evolution-iterations 3 \
jsoncpp
elfuzz synth -T grammar.glade re2
elfuzz synth -T semantics.islearn cvch
elfuzz produce --time 10 -T glade jsoncpp
elfuzz minimize -T glade jsoncpp
elfuzz run rqgl.seed_cov -T glade jsoncpp
elfuzz run rql.afl --fuzzers glade \
--repeat 1 \
-—time 60 \
jsoncpp
$ elfuzz run rq2.afl --fuzzers glade \

W

3https://docs.docker.com/engine/install/

--repeat 1 \
-—time 60 \
jsoncpp

$ elfuzz run rg2.triage

$ elfuzz run rqg2.real_world --time 60

$ elfuzz run rg3

These commands should output messages like “ELFuzz
fuzzers successfully synthesized” without being interrupted
by errors.

A.4 Evaluation Workflow

This section outlines the major claims presented in the eval-
uation part of the paper (§A.4.1). It describes how to conduct
the experiments to fully reproduce the results presented in
the paper, thereby supporting these claims (§A.4.2). However,
these experiments require a significant amount of time and
substantial computational resources. Thus, another option
is to run the smaller-scale experiments (§A.4.2), which
share the same settings as the full-scale experiments but
are conducted for a shorter time or with fewer repetitions.
Results produced by the small-scale experiments should also
support our claims, although not 100% replications of those
in our original paper. We will explain how to conduct them
and draw the same claims from the results.

A4.1 Major claims
The major claims of the paper are as follows:

e C1. Fuzzers synthesized by ELFUZzZz significantly
outperform the state-of-the-art generation-based fuzzers,
respecting the coverage of the produced test cases and the
promotion that the test cases bring to later mutation-based
fuzzing processes. This is proven by the input genera-
tion experiments (E1) and the mutation-based fuzzing
experiment (E2) in RQI.

e C2. Fuzzers synthesized by ELFUZzz significantly
outperform the state-of-the-art generation-based fuzzers
when being used to find artificially injected bugs, and
they can find previously unknown bugs in real-world
SUTs. This is proved by the bug-finding experiments
on bug-injected benchmarks (E3) and the real-world
bug-finding experiment on cvc5 (E4).

e (3. Fuzzer space contributes the most to the performance
of ELFUZz among all the components. This is proved by
the input generation experiments (ES) and the LLM-driven
evolution processes (E6).

e C4. Fuzzers synthesized by ELFUZZ are interpretable
and extensible. This is proved by case studies on the
fuzzer code (E7) and manual adaptation of ZEST, another
input-generation technique, onto the fuzzers (ES).

A.4.2 Full-scale experiments

Below are instructions on conducting full-scale experiments
to replicate the results in the paper. It also lists the expected
outputs and how they support our claims. Note that if you
have validated the functionality of the replication package


https://docs.docker.com/engine/install/

before the experiments, please reset the Docker container
(remove, re-launch, and re-initialize it) to avoid data pollution
caused by the results produced by the functionality validation
process.

e E1, E5, and E6. [1 human-hour + 10 compute-day +
50GiB disk] Inside the Docker container, use the following
command to synthesize the fuzzers using ELFUZZ or its
variants (E6), or mine grammars and semantic constraints
using the baselines:

$ elfuzz synth -T <baseline> <benchmark>
Please refer to the help message (--help) on what values
<baseline> and benchmark can take. The following
commands conduct the input generation experiments (E1
and ES5):

elfuzz produce -T <baseline> <benchmark>

elfuzz minimize -T <baseline> <benchmark>

elfuzz run rql.seed_cov -T <baseline> <benchmark>
elfuzz run rqg3

$

$

$

$
The coverage of the generated seed test cases will be
recorded in an Excel sheet, which can be viewed via

$ pyexcel view /elfuzz/analysis/rql/results/seed_cov.xlsx
The coverage of seed test cases generated by ELFuzz
is expected to be significantly higher than that generated
by other methods (E1 results for C1). Similarly, you can
view the coverage of seed test cases generated by ELFUZZ
variants via

$ pyexcel view /elfuzz/analysis/rq3/rg3_ablation.xlsx
The coverage of seed test cases generated by ELFuzz-
NOSP, ELFuzz-NOCP, and ELFUzz-NOIN will show
slight decreases, while that generated by ELFUzz-NOFS
will show significant decreases (ES results for C3). The
coverage trends of candidate fuzzers of the four variants
during evolution can be viewed via

$ pyexcel view /elfuzz/analysis/rq3/rq3_evolve_cov.xlsx

The values will display curves similar to those shown in
Figure 12 of the paper if being drawn (E6 results for C3).

e E2 and E3. [1 human-hour + 20 compute-day + 5GiB
disk] The following command runs the mutation-based
fuzzing experiments in RQ1 (E2) and collects and analyzes
the results:

$ elfuzz run rqgl.afl --fuzzers <baseline_list> \
—--repeat 10 <benchmark_list>

The following commands will run the mutation-based
fuzzing campaign in RQ2 (E3) and collect and analyze the
results:

$ elfuzz run rg2.afl --fuzzers <baseline_list> \
—-repeat 10 <benchmark_list>
$ elfuzz run rg2.triage

You can view the averaged coverage trends during AFL++
fuzzing campaigns for RQ1 and trends of triggered bugs via

$ pyexcel view /elfuzz/rql/results/rql_sum.xlsx
$ pyexcel view /elfuzz/rg2/results/rg2_count_bugs.xlsx

The data will show curves similar to those in Figures 8 and
9, i.e., the curves of ELFUZzz will be higher than that of
others (E2 for C1 and E3 for C2).

e E4. [8 human-hour + 14 compute-day] The following
command runs the real-world bug-finding experiment:

$ elfuzz run rg2.real_world

The triage and analysis of the results can only be done
manually. The data tarball contains the bug-triggering

test cases we found, though, in rq2/results/cvc5_bugs.
You can check whether they actually trigger the bugs of
the corresponding versions of cvc5 (E4 for C2).

e E7 and E8. These two empirical case studies were done
manually. The README file in the Docker image contains
suggestions on how to replicate them (E7 and E8 for C4).

e Reproducing the figures and tables. Use the following
command to reproduce the figures and plots presented in
the paper:

$ elfuzz plot —-all
Note that we cannot include proprietary fonts in the
replication package. The appearance of the final rendered
figures may be different from that in the original paper.
Please refer to the README files in the Zenodo repository,
source code tarball, and Docker image tarball for more details.

A.4.3 Small-scale experiments

The full-scale experiments require a significant amount of
time and substantial computational resources. Instead, you
can choose to run some experiments at smaller scales, and
the results can also support our claims. Below are instruc-
tions.

¢ E1 and ES. [1 human-hour + 1 compute-day + 25GiB
disk] Unfortunately, decreasing the number of evolution
iterations will significantly affect the performance of the
synthesized fuzzers, which is expected. Thus, we cannot
run the small-scale versions of the synthesis processes and
E6. Therefore, we will utilize the original fuzzers included
in the replication package. For El and ES5, you can use
the ——time 60 option for the produce subcommand to
run the seed test case generation for 1 minute instead of
10. Even this short time limit should already demonstrate
the advantage of ELFUZZ (C1) and the huge impact of
excluding the fuzzer space from ELFUZzz (C3).

E2 and E3. [1 human-hour + 5 compute-day + 5GiB disk]
Note that using seed test cases generated in a time shorter
than 10 min can weaken the advantage of ELFUZZ in
AFL++ fuzzing campaigns, which is expected. Please reset
the Docker container if you have run the above small-scale
experiments before starting these two experiments, to en-
sure that you use the original test cases (generated in 10
minutes) included in the replication package. Then, you can
change the value of the —-repeat option from 10 to 3 to
decrease the number of repetitions. Use the ——time 3600
option to run the AFL++ fuzzing campaigns for 1 hour
instead of 24 hours. ELFUZzZ should be able to show ad-
vantages within the first hour of fuzzing.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Setup
	Installation
	Initilizing the environment
	Functionality Validation

	Evaluation Workflow
	Major claims
	Full-scale experiments
	Small-scale experiments

	Version


