ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: OwlC: Compiling Security
Protocols to Verified, Secure, High-Performance Libraries

Pratap Singh
Carnegie Mellon University

A Artifact Appendix

A.1 Abstract

Paper Cryptographic security protocols, such as TLS or
WireGuard, form the foundation of a secure Internet; hence, a
long line of research has shown how to formally verify their
high-level designs. Unfortunately, these formal guarantees
have not yet reached real-world implementations of these pro-
tocols, which still rely on testing and ad-hoc manual audits for
security and correctness. This gap may be explained, in part,
by the substantial performance and/or development overhead
imposed by prior efforts to verify implementations.

To make it more practical to deploy verified implementa-
tions of security protocols, we present OwlC, the first fully
automated, security-preserving compiler for verified, high-
performance implementations of security protocols. From
a high-level protocol specification proven computationally
secure in the Owl language, OWIC emits an efficient, interop-
erable, side-channel resistant Rust library that is automatically
formally verified to be correct.

We produce verified libraries for all previously written Owl
protocols, and we also evaluate OwlC on two new verified
case studies: WireGuard and Hybrid Public-Key Encryption
(HPKE). Our verified implementations interoperate with ex-
isting implementations and their performance matches unver-
ified industrial baselines on end-to-end benchmarks.

Artifact This artifact includes the Haskell source code of
OwlIC, as well as the various case studies described in the
paper: 14 toy protocols in Owl, an example of a verified ap-
plication built on top of an Owl protocol, and our performant,
interoperable implementations of WireGuard and HPKE. We
also provide a Docker container in which to run the evalua-
tions described in our paper, and scripts to automate those
evaluations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

OwIC is a security-preserving compiler for cryptographic pro-
tocols in the Owl language; thus, using OwlC does not entail
direct security, privacy or ethical concerns. Our artifact does

Joshua Gancher
Northeastern University

Bryan Parno
Carnegie Mellon University

not contain any attacks or exploits, nor is it intended to be de-
structive in any manner. To provide further isolation to users,
we provide a Dockerfile which will build a self-contained
Docker image with all dependencies for our evaluation.

A.2.2 How to access

Our artifact is available on Zenodo at https://doi.
org/10.5281/zenodo.15605318. We provide a zip file
owl-usenix2025-aeval.zip containing all files required
for the evaluation.

A.2.3 Hardware dependencies

Our artifact requires an x86-64 machine with at least 32 GB
of RAM and 30 GB of free disk space.

A.2.4 Software dependencies

The artifact has been tested on Ubuntu 20.04 and Docker
version 24.0.5. More recent versions, or other operating sys-
tems, may work as well. We require Python 3 (version 3.8.10
or newer) and pip3 on the host device, with the packages
matplotlib, numpy, and prettytable available; these will
be installed during the Set-up phase (A.3). For (E2), we re-
quire the following flags to Docker, to set up a WireGuard
VPN tunnel between two containers:

--cap-add NET_ADMIN --device \
/dev/net/tun:/dev/net/tun

All experiments require Internet access to download Haskell,
Rust, or Go dependencies.
A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Ensure that Docker, Python3, and pip3 are installed and
available on the host system.

https://doi.org/10.5281/zenodo.15605318
https://doi.org/10.5281/zenodo.15605318

2. Download and unzip the artifact archive. All remaining
steps should be conducted at the top level of the resulting
directory owl-usenix2025-aeval.

3. Install required Python dependencies:

pip3 install -r requirements.txt

If desired, the Python dependencies can be installed in a
virtual environment such as venv.

4. Build the Docker image:

docker build -t owlc-aeval

Note that this may take up to 30 minutes, and requires
Internet access to download dependencies. Alternatively,
a pre-built Docker image is available on the Docker Hub
at https://hub.docker.com/repository/docker/
psl729/owlc-aeval/. To pull the image and tag it as
owlc-aeval, as expected by the scripts:

docker pull psl729/owlc-aeval
docker tag psl729/owlc-aeval owlc-aeval

While our artifact has been developed and tested for an
x86-64 Linux machine, other architectures may work as well.
To build the image on Apple Silicon, pass the --platform
linux/amd64 argument to docker build, as:

docker build --platform=linux/amd64 -t \
owlc-aeval

Note that this will use Rosetta emulation to run the scripts,
which will likely incur large overheads and result in very
different performance measurements.

A.3.2 Basic Test

We provide a helper script, run_owlc. sh, that runs OwlC on
a specified file, then verifies the generated library using Verus.
The library is generated in extraction/src/lib.rs. Asa
simple test, run:

./run_owlc.sh owl_toy_protocols/dhke.owl

This will typecheck, compile, and verify our Diffie-Hellman
case study. It should take about 2 minutes the first time (sub-
sequent runs may be faster). The script will print Done!
at the end if everything was successful; it will also print
verification results:: 105 verified, 0 errors or
similar near the end of the output, confirming that Verus veri-
fied the generated code.

A.4 Evaluation workflow

Note that some of our evaluations and claims refer to the
extended version of our paper, available on ePrint at https:
//ia.cr/2025/1092. The extended version contains three
extra appendices, including Appendices E and F that con-
tain additional details on our WireGuard benchmarks, but is
otherwise identical to our submitted version.

A.4.1 Major Claims

(C1): OwIC is a security-preserving compiler for protocols
in the Owl language, producing Rust libraries verified
with Verus to be free of explicit and implicit informa-
tion leakage. This claim is evaluated in Figure 13 and
Section 10 of our paper.

(C2): OwIC’s Rust protocol libraries for WireGuard and
HPKE have performance equivalent to state-of-the-art
industrial implementations. This claim is evaluated in
Sections 10.2 and 10.3 of our paper, and Appendices E
and F of our extended version.

A.4.2 Experiments

Note: You should run all of the .sh scripts on your host
machine; you don’t need to spin up the Docker container
in interactive mode to run them. The scripts will them-
selves spin up containers as necessary to run the experi-
ments. All scripts should be run from the top-level directory
owl-usenix2025-aeval.
(E1): [Run OwWIC on all examples] [5 human-minutes + 20
compute-minutes]|:
This experiment substantiates claim (C1) by running
OwIC on all sixteen examples from our paper, then using
Verus to verify each of the resulting implementations. It
should produce a table similar to Figure 13 in our paper.
How to: Run the following command:

./run_owlc_on_all.sh

Results: Once complete, the script should print a ta-
ble with the same structure as Figure 13 in our paper.
Note that some of the line counts for Verus may dif-
fer slightly due to changes in OwlC, and the verification
times may be shorter due to improvements in Verus since
the paper was accepted. The raw data will be saved to
run_owlc_on_all.csv, and a copy of the formatted ta-
ble will be saved to run_owlc_on_all.txt.
If any of the table rows contain ERROR, that indicates
that either Owl failed to typecheck the file, OWIC failed
to compile it, or Verus failed to verify the generated code.
(E2): [Benchmark WireGuard end-to-end performance] [10
human-minutes + 4 compute-hours]:
This experiment substantiates claim (C2) by measuring
the end-to-end performance of several WireGuard im-
plementations based on OwlC’s generated WireGuard
library, compared against industrial baselines. For de-
tails on how we constructed our OwlC-based WireGuard
implementations, see Section 9.2.2, and for details on
the baselines and comparisons we performed, see Sec-
tion 10.2.1 and Appendix E in our extended version.
How to: Run the following command:

./bench_wireqguard_end_to_end.sh

https://hub.docker.com/repository/docker/ps1729/owlc-aeval/
https://hub.docker.com/repository/docker/ps1729/owlc-aeval/
https://ia.cr/2025/1092
https://ia.cr/2025/1092

This script calls the Python scripts
bench_wg_linedelay.py and bench_wg_mss.py
with arguments to run all benchmarks. Since this
benchmark needs to orchestrate two Docker containers
connected by a Docker network bridge, we run the
Python scripts on the host machine.
Results: Once complete, this script will generate four
graphs in both .png and . pdf format, as follows:
* bench_wg_linedelay-go. {png|pdf}: Should be
comparable to Figure 14 in our paper.
* bench_wg_linedelay-rs. {png|pdf}: Should be
comparable to Figure 17 in our extended version.
* bench_wg_mss—-go. {png|pdf}: Should be compa-
rable to Figure 16 in our extended version.
* bench_wg_mss-rs. {png|pdf}: Should be compa-
rable to Figure 18 in our extended version.
In all cases, the generated graphs should be comparable
in terms of the relative performance of the three Wire-
Guard implementations in question; the precise mea-
sured throughput values may differ from our paper due
to different hardware and Docker overhead. The raw data
for each graph is saved in the corresponding . csv files,
and in formatted tables in the corresponding . txt files.
(E3): [Benchmark HPKE end-to-end performance] [10
human-minutes + 5 compute-minutes|: This experiment
substantiates claim (C2) by measuring the end-to-end
performance of our HPKE implementation based on
OwlIC’s generated HPKE library, compared against an in-
dustrial baseline. For details on how we constructed our
OwlC-based HPKE implementation, see Section 9.3.2,
and for details on the baselines and comparisons we
performed, see Section 10.3.
How to: Run the following command:

./bench_hpke.sh

Results: Once complete, this script will generate
two text tables, printed to the shell and saved to
bench_hpke.txt. The raw data will be saved to
bench_hpke.csv. The contents of the tables should be
comparable to Figure 15 in our paper in terms of relative
performance; in particular, the percentage differences
from the baselines in each table should be comparable.
(E4): [Micro-benchmark WireGuard handshake] [10 human-
minutes + 5 compute-minutes]:
This experiment substantiates claim (C2) by measuring
the performance of OwWIC’s generated routines for the
WireGuard handshake in isolation. For discussion of the
micro-benchmark, see Section 10.2.2, and for details, see
Appendix F in our extended version.
How to: Run the following command:

./microbench_wg_handshake.sh

Results: Once complete, this script will generate
two text tables, printed to the shell and saved to

microbench_wg_handshake.txt. The raw data will
be saved to microbench_wg_handshake.csv. The con-
tents of the tables should be comparable to Figure 19 in
our extended version in terms of relative performance; in
particular, the percentage differences from the baselines
in each table should be comparable.

(ES): [Micro-benchmark WireGuard transport] [10 human-
minutes + 45 compute-minutes]:
This experiment substantiates claim (C2) by measuring
the performance of OwlC’s generated routines for the
WireGuard transport layer in isolation. For discussion of
the micro-benchmark, see Section 10.2.2, and for details,
see Appendix F in our extended version.
How to: Run the following command:

./microbench_wg_transport.sh

Results: Once complete, this script will generate a
graph in microbench_wg_transport.{pdf|png}.
The raw data will be saved in
microbench_wg_transport.csv, and in a for-
matted table in microbench_wg_transport.txt.
This graph should be comparable to Figure 20 in our
extended version in terms of the relative performance
of the three routines under test. Note that the generated
graph will not have the data series for OWICyop: that
corresponds to an old, unoptimized version of OwIC,
about which we do not make any performance claims.

A.5 Notes on Reusability

The run_owlc.sh script provides a convenient way
to run Owl and OwIC on a protocol. OwlC gener-
ates a library crate in extraction/, with the gener-
ated code in extraction/src/lib.rs. The other files in
extraction/src/ are handwritten Verus definitions for the
generated code; of particular interest may be speclib.rs,
which contains our definitions of the ITree (Section 4.1),
DeclassifyingOp (Section 5.2), and corresponding token
structures (Sections 4.2 and 5.2). In execlib.rs, mod
secret defines our SecretBuf abstraction (Section 5.1).
OwIC is under active development as part of the Owl
project. The open-source repository is at https://github.
com/secure-foundations/owl.

A.5.1 Echo Server case study

As discussed in Section 7, we developed a simple
case study of a verified echo server, available in
the echo_server_example directory. The directory
echo_server_example/extraction contains a copy of the
generated protocol library, with the addition of server.rs, a
handwritten file containing a verified Verus implementation
of the main echo server logic (Section 7.2). To verify
the echo server example code with Verus, run the script

https://github.com/secure-foundations/owl
https://github.com/secure-foundations/owl

verify_echo_server_example.sh on your host machine
(not inside the Docker container).

The echo server illustrates how to connect a library gener-
ated by OwIC to a larger verified codebase, by hand-writing
ITree specifications for the application logic. Verus will verify
that the application logic follows its handwritten ITree speci-
fication. However, as discussed in Section 7, Verus does not
presently feature information-flow control or cryptographic
reasoning, so it cannot prove cryptographic security proper-
ties about handwritten ITrees. Developers must therefore take
care that any handwritten ITrees do not leak protocol secrets
or otherwise compromise the security properties of the code
proven in Owl. The best practice for developing verified ap-
plications using OWIC is to write as much of the application
logic as possible in Owl, with handwritten ITrees only for sim-
ple interfaces and functionality that does not directly interact
with secrets.

A.5.2 Incorporating code generated by OwlC into larger
Rust projects

OwIC generates a library crate that can straightforwardly be
integrated into verified code in Verus. Examples of this are in
the echo_server_example directory, as we discuss below.
Our WireGuard and HPKE case studies illustrate how to inte-
grate the generated libraries into pre-existing Rust codebases.
We discuss some high-level considerations here.

Integrating a library generated by OwlC into a pre-existing
Rust codebase requires building an interface between verified
and unverified code. As with any such interface, the developer
must make sure that the unverified calling context satisfies the
preconditions of the verified routine. For OwlC, this means
that all arguments to generated protocol routines must match
the Owl types of the corresponding Owl protocol routine.
That is, if an Owl routine takes as argument a key k, then the
generated Verus routine must only be called with the runtime
value of the key k.

OwIC relies on Rust abstract types and Verus verification
conditions to maintain important soundness and correctness
properties. Our ITree tokens (Section 4.2) cannot be created or
duplicated, so that implementation code cannot forge tokens
to justify incorrect I/O operations. Our SecretBuf wrapper
types (Section 5.1) are opaque, so that implementation code
cannot leak secrets via side channels. However, connecting to
unverified Rust code may necessitate breaking some of these
abstraction barriers. For instance, an application may need to
reveal a SecretBuf to display a decrypted plaintext message
to the user.

When connecting to unverified code, developers may there-
fore need to add “escape hatches” that enable such function-
ality. This must be done with extreme care. We recommend
that any such escape hatches be annotated with a Verus pre-
condition of requires false, so that verified code cannot
use them, and the generated libraries remain sound.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Echo Server case study
	Incorporating code generated by OwlC into larger Rust projects

	Version

