ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security *25 Artifact Appendix: AUTOVR: Automated Ul
Exploration for Detecting Sensitive Data Flow Exposures in Virtual
Reality Apps

John Y. Kim Chaoshun Zuo

Yanjie Zhao Zhigiang Lin

The Ohio State University

A Artifact Appendix

A.1 Abstract

This artifact is the source code of the tool: AutoVR. Au-
toVR’s purpose is to instrument scenes, U, and physics
events on Unity VR apps ran on the Meta Quest 2. The
source code of AUTOVR is available on GitHub: https:
//github.com/0SUSecLab/AutoVR, additionally, the exper-
imental results of all 366 apps available at: https://doi.
org/10.5281/zenodo.15832783. To evaluate AutoVR, we
have developed a model test Unity VR app, which AUTOVR
can comprehensively exercise all scenes and events in. Addi-
tionally, to show AutoVR’s capabilities, we have instrumented
AUTOVR upon the 366 VR apps and collected network traf-
fic during instrumentation. The results of both experiments
are compared with experiments using Android Monkey, a
black-box Android event testing tool, in-place of AutoVR.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Please ensure account and device usage permission has been
granted by the owner of the Meta Quest 2 device as VR apps
are known to collect user data and could pose a risk to the
owner’s privacy. Our dataset uses test accounts and test de-
vices, and no PII data were collected from humans.

A.2.2 How to access

AUTOVR and our datasets are available at https://doi.
org/10.5281/zenodo.15832783, in addition to 10 real-
world Unity VR APKSs to run AUTOVR with. As AUTOVR
continues to be developed, we have made AUTOVR available
on GitHub at https://github.com/0SUSecLab/AutoVR.

A.2.3 Hardware dependencies

AUTOVR can be run on any standard machine running Linux
or MacOS. A Meta Quest 2 device with developer mode
(i.e., capable of using adb) is required to run AutoVR. While
AUTOVR does not require a rooted Meta Quest 2 device, it is

recommended to use a rooted device as a significant subset of
the 366 apps were run on a rooted device.

A.2.4 Software dependencies

Software dependencies for AUTOVR are detailed in the
README file on AutoVR’s GitHub page.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

We have provided the complete instructions on how to install
AUTOVR on the README page on GitHub. For the exper-
iments, we include two APK files in the Zenodo repository:
model-app-non-rooted.apk, and antmonitor-modified.apk. We
describe the purpose for each APK in the following:

* model-app-non-rooted.apk is the model app embedded
with frida-gadget used in §6.1 in the evaluation of the

paper.

* antmonitor-modified.apk is a modified version of
AntMonitor suited for the sensitive data exposure de-
tection experiment, detailed in section §6.2 of the paper.

To install an APK file, run the following command: adb
install <app>.apk
A.3.2 Basic Test

Once AUTOVR and the model app ((2) or (b) from A.3.1) are
installed, follow the steps listed in the README file to build
and run AutoVR. Use the following configurations from the
Flag Table:

* device: (ID of the Meta Quest 2 using adb devices).

* package: com.osuseclab.AutoVRTest

https://github.com/OSUSecLab/AutoVR
https://github.com/OSUSecLab/AutoVR
https://doi.org/10.5281/zenodo.15832783
https://doi.org/10.5281/zenodo.15832783
https://doi.org/10.5281/zenodo.15832783
https://doi.org/10.5281/zenodo.15832783
https://github.com/OSUSecLab/AutoVR

If the device is rooted, ensure the ~rooted flag is set. To test
functionality, the expected output should show a log contain-
ing "Starting AutoVRApp", and initialization logs showing a
list of (.dll) assembly names. AUTOVR should then be exer-
cising events on the model app until the finished log shows.
The effects of the events will be reflected visually in the Meta
Quest 2 device.

A.4 Evaluation workflow
A.4.1 Major Claims

Our paper presents AutoVR, a tool/framework to automati-
cally insturment scenes, Ul, and physics events on Unity VR
apps. In the paper, we claim that AUTOVR can indeed exer-
cise events by leveraging the internal binary, and be used to
collect any sensitive data exposures from the app using net-
work collection tools like AntMonitor. We make the following
major claims:

(C1): By leveraging the internal binary, AUTOVR is capa-
ble of exercising scenes, Ul, and physics events from a
model Unity VR test app. This is proven by experiment
(E1) whose results are shown in Table 2 in section §6.2
of the paper.

(C2): AUTOVR can be used to exercise functions that expose
sensitive data from outgoing traffic in a Unity VR app.
This is proven by experiment (E2) whose results are
shown in Figure 9 and Figure 10 in §6.2 of the paper.

(C3): AUTOVR significantly outperforms Android Monkey
in both exercising events and exposing sensitive data
from a Unity VR app. This is proven by both experiments
(E1) and (E2), whose results are shown in Figure 11 in
section §6.2 of the paper.

A.4.2 Experiments

(E1): [Event exercising capability using the model test Unity
VR app] [5 human-minutes + 200 compute-seconds +
SMB disk]: This experiment will test AUTOVR and An-
droid Monkey on a model test app, where the number of
scenes and events are known. When an event executes,
the test app will log the number of executions and output
each scene’s events in locally stored json files.
Preparation: Ensure that a Meta Quest 2 device is avail-
able with developer mode enabled (i.e., adb commands
can be performed for the device). Perform the installa-
tion of AUTOVR and the model-app(-non-rooted).apk
app on the Meta Quest 2 device described in the A.3.1.
Ensure no other apps are running on the device.
Execution: Run AUTOVR with the instructions listed
in the README file on AUTOVR’s GitHub page, with
the package argument set to com.osuseclab.AutoVRTest.
Note: sometimes AUTOVR can initially stall. If the ini-
tialization of the assembly (.dll) files are not shown in the

output log after 5 seconds, cancel execution and rerun
AutoVR.

Results: Collect the results from pulling
all JSON files (json) from the following
directory within the Meta Quest device:

/sdcard/Android/data/com.osuseclab.AutoVRTe
st/files/. Each JSON file is named with the following
scheme: <event-type>-<scene name>.json, where the
<event-type> indicates what type of event (i.e., Ul,
trigger, collision) and <scene name> being the name
of the scene. The JSON file structure is keyed by the
event name and valued by the number of times executed.
Each physics event key is schemed in the following
format: <collider name>|<physics event type>|<the
other collider to perform the event>. The outputted
results from using AUTOVR and Android Monkey
should reflect Table 2 in the paper.

(E2): [Sensitive data exposure capability using real Unity
VR apps] [2 human-hour + 3 compute-hour]: This ex-
periment will test AUTOVR and Android Monkey on 5
real-world Unity VR apps to compare the number of data
exposures exercised by AUTOVR and Android Monkey.
Testing all 366 Unity VR apps will take weeks of instru-
mentation, as such, we have scaled down the number of
apps to 5 for reproducibility.

Preparation: Install all 5 Unity VR APKs (available
at https://doi.org/10.5281/zenodo.15832783)
onto the Meta Quest 2 device. Additionally, install
the antmonitor-modified.apk file from the Zenodo
repository. Pull and unzip the Monkey source code:
monkey . z1ip file from the Zenodo repository. Ensure no
other apps are running on the device for each time you
run AUTOVR or Monkey.
Execution: We have provided the script
run_with_antmonitor.sh for both AutoVR and
Monkey. run_with_antmonitor.sh requires three
arguments:

¢ device_name: The Meta Quest 2 device name from

adb devices.

* package_name: The package name of the app.

* ssl_offset: The SSL offset for SSL unpinning.
The SSL offsets for all 5 apps have been pre-
computed and are available at https://doi.org/
10.5281/zenodo.15832783. For each package name
listed, use the SSL offset for the ss/_offset argu-
ment. The following is an example command for
one of the test apps: ./run_with_antmonitor.sh
FakeDeviceName com.BMINC.ArtGateVR (0x76efa8
Results: After each run of AUTOVR and Android Mon-
key, there will be a subdirectory called results which
contain the network traffic triggered by the tools. The
expected results should show that the AUTOVR runs ex-
tracted more bytes from the PCAP files for each package
name than the Monkey runs.

https://doi.org/10.5281/zenodo.15832783
https://doi.org/10.5281/zenodo.15832783
https://doi.org/10.5281/zenodo.15832783

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

