ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
SoK: So, You Think You Know All About Secure Randomized Caches?

Anubhav Bhatla*, Hari Rohit Bhavsar*, Sayandeep Saha, Biswabandan Panda
Indian Institute of Technology Bombay

A Artifact Appendix

A.1 Abstract

The artifact is used to evaluate the security of various cache
designs discussed in the paper. We provide the source files
and scripts required to reproduce all security results (Figures
3-19 and Table 2). A comprehensive README file is also
included to facilitate easy reproduction of the results.

A.2 Description & Requirements

This section lists all the hardware and software dependen-
cies required for the experimental setup to run all security
simulations. Given below is a description of the important
directories and scripts provided in the artifact:

¢ cache-model: An extended version of the behavioral
cache simulation model. This model is used to generate
results for Figures 3—14, 18-19, and Table 2.

¢ cachefx: An extended version of the CacheFX simulator
used to generate results for Figures 15-16.

¢ low-occupancy: An extended simulation model for our
low-occupancy-based attack simulations. This model is
used to generate results for Figure 17.

* buildAll. sh: Script used to build all source files for
the cache model, CacheFX, and low-occupancy simula-
tors.

* genAllFigs.sh: Script used to run all experiments
and generate PDF files for Figures 3—19.

* genTable. sh: Script used to run experiments and
generate Table 2.

* requirements.txt: A list of the Python libraries
needed for the smooth functioning of all scripts.

* README . md: Provides a description of the directories
and detailed steps to build projects and run experiments
to reproduce results from this work.

“These authors contributed equally to this work

A.2.1 Security, privacy, and ethical concerns

Our study does not introduce any novel or previously un-
known attacks. Instead, it focuses exclusively on attacks that
have already been disclosed and documented in prior work.
All the attacks discussed in our evaluation are well-established
and widely recognized within the community. The experi-
ments were carried out using software-based, open-source
simulators to replicate the required conditions and analyze
system behaviors. No real-world systems were accessed, and
no vulnerabilities were discovered, exploited, or tested on
live or operational systems. Therefore, there are no ethical
concerns in this work.

A.2.2 How to access

Our artifact is available through Zenodo. The artifact
can be accessed at https://doi.org/10.5281/zenodo.
15529618.

A.2.3 Hardware dependencies

We implemented and evaluated our artifact on a server with
the Intel Xeon Gold 6342 CPU, 128GB of RAM, and 4TB of
disk storage. To effectively parallelize simulations and ensure
timely completion, we recommend utilizing a large number
of CPU cores, ideally distributed across multiple servers.

A.2.4 Software dependencies

We test our artifact on a system running Ubuntu 20.04.6. How-
ever, any operating system which supports C++ and Python
is sufficient to run our experiments. The Python packages
required have been listed in the requirements. txt file. We
also require docker and the C++ boost library for our simula-
tions. The instructions to install this library and the Python
libraries can be found in the README . md file.

A.2.5 Benchmarks

Our experiments evaluate the eviction rate of cache designs,
number of LLC evictions required for eviction-set-generation,
and the guessing entropy for key recovery. These experiments
are self-sufficient and do not require any benchmarks for
evaluation.


https://doi.org/10.5281/zenodo.15529618
https://doi.org/10.5281/zenodo.15529618

A.3 Set-up
A.3.1 Installation

We require that python, pip3, and docker are already installed
on the system. For installing required Python libraries, run:

$ pip3 install -r requirements.txt

We also require the C++ boost library, installed using:

$ sudo apt install libboost-all-dev

The source files can be compiled using the following:

$ bash buildAll.sh build

A.3.2 Basic Test

An easy way to check if the simulation set-up is complete is
to generate all figures and the table using our existing results.
These can be generated using:

$ bash genAllFigs.sh 1
$ bash genTable.sh 1

If the set-up is complete, 17 PDF files will appear, named
figurex.pdf, where x ranges from 3 to 19. Table 2 will also
be printed on the terminal.

We recommend removing these figures before moving for-
ward, especially if one aims to reproduce all the security
results from scratch. Use the following command:

$ rm *.pdf

A.4 Evaluation workflow

We provide flexibility in how one can reproduce our security
results. A single script can be used to run experiments for all
security figures (Figures 3—19) at once. We also provide the
option to use our existing simulation results to generate the
figures without a fresh run:

$ bash genAllFigs.sh 1

In order to generate all figures using a fresh simulations, run:

$ bash genAllFigs.sh 0

Similarly, to generate Table-2 using existing results, run:

$ bash genTable.sh 1

A fresh set of simulations for Table-2 can be run using:

$ bash genTable.sh 0

All scripts that will be discussed later have the same option
of using either our existing results (set option to 1) or running
a fresh set of simulations (set option to 0). We assume that
the user wants a fresh set of simulations, and set this option
to 0 by default in Section A.4.2.

A.4.1 Major Claims

(C1): Increasing the number of skews helps reduce the evic-
tion rate. Additionally, load-aware skew selection im-
proves eviction rate. These are validated by E1 described
in Section 3.2, with results in Figures 3 and 4. We later
talk about how this depends on the warm-up state in Ex.

(C2): Only the combination of skews with load-aware skew
selection, invalid tags and global LRU eviction provides
a security benefit. Additionally, increasing the invalid
tags improves the security of such cache designs. These
are validated by E2 described in Section 3.3, with results
in Figures 5, 6 and 7.

(C3): High associativity provides significant security bene-
fits. This is validated by E3 described in Section 3.4,
with results in Figures 8 and 9.

(C4): Random replacement policy performs worse than LRU
and RRIP for conflict-based attacks, as it results in higher
eviction rates. This is validated by E4 described in Sec-
tion 3.5, with results in Figures 10 and 11.

(C5): High associativity designs require significantly more
LLC evictions to create eviction sets that achieve a 30%
eviction rate. Adding the knobs of load-aware skew se-
lection, invalid tags, and global eviction further improves
the security. These are validated by ES described in Sec-
tion 3.6, with results in Figure 12.

(C6): The conflict testing algorithm is much faster than
Prime, Prune and Probe in terms of number of LLC
evictions needed for same-sized eviction sets. This is
validated by E6 described in Section 3.6, with results in
Table 2.

(C7): Eviction rate is independent of the cache size (assum-
ing same associativity). However, the number of LLC
evictions required to create eviction sets that achieve a
30% eviction rate increase with cache size. These are
validated by E7 described in Section 3.7, with results in
Figures 13 and 14.

(C8): SassCache and way-based partitioned cache designs
perform significantly better than other randomized cache
designs against occupancy-based attacks. Also, a random
replacement policy is better suited against occupancy-
based attacks compared to a deterministic replacement
policy. These are validated by E8 described in Section 4,
with results in Figures 15 and 16.

(C9): Mirage is vulnerable to low-occupancy-based attacks
compared to other randomized cache designs discussed
in this work. This is validated by E9 described in Section
4, with results in Figure 17.

(C10): The security benefit of designs using load-aware skew
selection has a strong dependence on the cache warm-up
state. This is validated by E10 described in Appendix B,
with results in Figures 18 and 19.



A.4.2 Experiments Results: figurel2.pdf file is generated.

(E6): [Comparison of eviction-set-creation policies] [96

(E1): [Impact of skews and skew selection policy] [48 compute-hour]: This experiment compares the conflict

compute-hour]: This experiment analyzes the impact of
skews and the skew-selection policy on cache security.
Execution: To run the experiment:

$ cd cache-model/
$ python3 get-fiqgure.py 0 3
$ python3 get-fiqgure.py 0 4

Results: figure3.pdf and figured.pdf files are gen-
erated.

(E2): [Combinations of skew selection policies, invalid tags,

and eviction policy] [72 compute-hour]: This experi-
ment analyzes the security of various knob combinations
including skews with random and load-aware skew se-
lection, invalid tags, and local and global eviction.
Execution: To run the experiment:

$ cd cache-model/

$ python3 get-figure.py 0 5
$ python3 get-figure.py 0 6
$ python3 get-fiqure.py 0 7

Results: figure5.pdf, figure6.pdf and
figure7.pdf files are generated.

(E3): [Impact of high associativity] [48 compute-hour]: This

experiment analyzes the security impact of high associa-
tivity on designs with just two skews, and also invalid-
way-based designs.

Execution: To run the experiment:

$ cd cache-model/
$ python3 get-figure.py 0 8
$ python3 get-figure.py 0 9

Results: figure8.pdf and figure9.pdf files are gen-
erated.

(E4): [Impact of replacement policy] [48 compute-hour]:

This experiment analyzes the security impact of the re-
placement policy on designs with just two skews and
high associativity, and also invalid-way-based designs.
Execution: To run the experiment:

$ cd cache-model/
$ python3 get-figure.py 0 10
$ python3 get-figure.py 0 11

Results: figurel0.pdf and figurell.pdf files are
generated.

(ES): [Number of LLC evictions required for eviction-set-

creation] [96 compute-hour]: This experiment evaluates
the number of LLC evictions, required to create an evic-
tion set achieving 30% eviction rate, on various designs.
Execution: To run the experiment:

$ cd cache-model/
$ python3 get-figure.py 0 12

testing and prime, prune and probe algorithms based
on the number of LLC evictions they require to create
same-sized eviction sets.

Execution: To run the experiment:

$ bash genTable.sh 0

Results: Table-2 is printed on the terminal.

(E7): [Sensitivity to cache size] [96 compute-hour]: This

experiment analyzes the impact of cache size on the
eviction rate as well as on the number of LLC evictions
required for eviction-set-creation.

Execution: To run the experiment:

$ cd cache-model/
$ python3 get-fiqure.py 0 13
$ python3 get-figure.py 0 14

Results: figurel3.pdf and figureld.pdf files are
generated.

(E8): [Security against occupancy-based attacks] [96

compute-hour]: This experiment analyzes the security of
various cache designs against occupancy-based attacks.
Execution: To run the experiment:

$ cd cachefx/
$ python3 get-figure.py 0 15
$ python3 get-figure.py 0 16

Results: figurel5.pdf and figurel6.pdf files are
generated.

(E9): [Security against low-occupancy-based attacks] [30

human-minute + 128 compute-hour]: This experiment
analyzes the security of various cache designs against
low-occupancy-based attacks.

Execution: To run the experiment:

$ cd low-occupancy/

$ sudo docker run -it -v $(pwd)/randomized
_caches:/home/randomized_caches
randomized-caches

$ cd randomized_cache_hello_world/

$ bash setup.sh

cd ../ ; bash buildAES.sh

bash genNumbers.sh

bash getGE.sh

exit

sudo mv randomized_caches/results results
python3 get-figure.py 0

U U U O i

Results: figurel?7.pdf file is generated.

(E10): [Impact of warm-up states] [48 compute-hour]: This

experiment analyzes the impact of warm-up state on the
eviction rate, and how it causes deviation in results from
the original eviction-rate experiment.



Execution: To run the experiment:

cd cache-model/
python3 get-figure.py 0 18
python3 get-figure.py 0 19

Results: figurel8.pdf and figurel9.pdf files are
generated.

A.5 Notes on Reusability

We highly encourage others to use this work in order
to analyze other cache designs and configurations. For
cache-model simulations, one can change the cache con-
figuration in cache-model/config/cache. json. If needed,
the source code inside cache-model/cache can be mod-
ified to implement additional cache designs. New experi-
ments can be implemented by modifying the source code in
cache-model/test. For cachefx simulations, new configu-
rations can be added in cachefx/configs and new cache de-
signs can be implemented using the files in cachefx/Cache.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


