
USENIX Security ’25 Artifact Appendix: GDMA: Fully Automated DMA
Rehosting via Iterative Type Overlays

Tobias Scharnowski, Simeon Hoffmann, Moritz Bley, Simon Wörner, Daniel Klischies1,
Felix Buchmann, Nils Ole Tippenhauer, Thorsten Holz, and Marius Muench2

CISPA Helmholtz Center for Information Security
1Ruhr-Universität Bochum, 2University of Birmingham

A Artifact Appendix

A.1 Abstract

This artifact contains the information necessary to reproduce
all claims from the paper GDMA: Fully Automated DMA
Rehosting via Iterative Type Overlays.

A.2 Description & Requirements

This artifact is a fuzzing artifact and hence scales better the
more resources it can use. In our setup, we ran each experi-
ment 10 times, 24 hours each. We used two Intel Xeon Gold
5320 CPUs (26 physical cores and 2.20GHz each), 256 GB
of RAM, and 1TB SSD storage.

For artifact evaluation, we recommend running the experi-
ment with 26 cores, 3 times, 12 hours each. This ensures that
even on moderate hardware, the artifact evaluation time period
suffices. With this configuration, one full pipeline run takes
eleven days. Please take this into account when inspecting this
artifact. However, it is possible to split up the long-running
parts over several machines to reduce runtime.

A.2.1 Requirements

All experiments were run on an Ubuntu 22.04 machine. We
provide reduced fuzzing configurations to account for arti-
fact reviewers without access to hardware clusters. However,
our recommended configuration still requires eleven days of
computing on a single piece of minimal hardware. Therefore,
please plan accordingly.

A.2.2 Security, Privacy, and Ethical Concerns

It may happen that new bugs are found during the evaluation
of this artifact. In that case, please report them responsibly.

A.2.3 How to Access

Please obtain all required files:

(A1) GDMA artifact: https://github.com/
fuzzware-fuzzer/fuzzware/tree/DMA

(A2) the GDMA experiments artifact https://github.
com/fuzzware-fuzzer/gdma-experiments

(A3) the DICE / P2IM reproduction archive:
https://doi.org/10.5281/zenodo.15600641
(dice_docker.tar.zstd)

Stable URL The stable URL of the artifact is the following:
https://doi.org/10.5281/zenodo.15600641.

A.2.4 Hardware Dependencies

This artifact is a fuzzing artifact and hence scales better the
more resources it can use. In our setup, we ran each experi-
ment 10 times, 24 hours each. We used two Intel Xeon Gold
5320 CPUs (26 physical cores and 2.20GHz each), 256 GB
of RAM, and SSD storage.

The minimal requirements are 26 cores, 64GB RAM and
500GB disk storage. More cores can speed up the experiments,
as can multiple machines.

A.2.5 Software Dependencies

Please install the following software dependencies:

docker curl ca-certificates patchelf texinfo
automake gcc zstd pip zip python3-venv
binutils-arm-none-eabi

Also, make sure that you are in the docker group that you can
use docker without elevated permissions1.

A.2.6 Benchmarks

None.

A.3 Setup
The setup is tested on Ubuntu 22.04.

1https://docs.docker.com/engine/install/linux-postinstall/

https://github.com/fuzzware-fuzzer/fuzzware/tree/DMA
https://github.com/fuzzware-fuzzer/fuzzware/tree/DMA
https://github.com/fuzzware-fuzzer/gdma-experiments
https://github.com/fuzzware-fuzzer/gdma-experiments
https://doi.org/10.5281/zenodo.15600641
https://doi.org/10.5281/zenodo.15600641

A.3.1 Installation

Installation of GDMA. Start by cloning the GDMA artifact
and installing it (A1):

git clone --recurse-submodules -b DMA
https://github.com/fuzzware-fuzzer/fuzzware.git;

cd fuzzware; ./build_docker.sh

This performs a regular docker build. If this build completes
the GDMA installation was successful.

Installation of GDMA experiments. Obtain the GDMA
experiments artifact (A2):

git clone https://github.com/fuzzware-fuzzer/
gdma-experiments.git

Enter the scripts directory and install the requirements in a
clean virtual environment.

cd gdma-experiments/scripts;
python3 -m venv venv && source venv/bin/activate &&
pip install -r requirements.txt

We expect all further commands to be executed from
within the virtual environment. To finish the installation of
the GDMA experiments artifact, move the three remaining
archives (A3-A5) to their place as described below.

Setup IDEs. Some samples need their integrated de-
velopment environments (IDEs) to successfully build. To
obtain the required IDE files, follow the instructions at
gdma-experiments/src/02-extended-test-suite/targets/

CY8CKIT-062-BLE/ and at
src/02-extended-test-suite/targets/LPC1837-mmio.
Move the resulting files into the ides directory.

Setup DICE / P2IM reproduction containers.
Move the DICE / P2IM reproduction archive to
gdma-experiments/docker-saves. This requires no un-
packing:

mv dice_docker.tar.zstd
gdma-experiments/docker-saves/

Configuring the system for fuzzing. Execute the follow-
ing commands to prepare the system for fuzzing with afl and
fuzzware.

echo 512 > /proc/sys/fs/inotify/max_user_instances;
echo 524288 > /proc/sys/fs/inotify/max_user_watches;
echo core >/proc/sys/kernel/core_pattern;
cd /sys/devices/system/cpu;
echo performance | tee cpu*/cpufreq/scaling_governor

A.3.2 Basic Test

To test that GDMA works correctly, execute:

fuzzware/run_docker.sh;
fuzzware pipeline --help

This gives you a shell in a docker container and executes
the fuzzware help. If --dma is among the listed options, then
GDMA is set up correctly.

To verify that the eval scripts are set up correctly, execute

cd gdma-experiments/scripts && python cli.py

If this shows you an argparse-style overview of command-line
options, then the scripts are setup correctly.

To confirm progress during the evaluation, inspect the fold-
ers of each experiment (e.g., 02-extended-test-suite/ or
01-dice-comparison/02-real-firmware/). If it contains an
output folder, then the fuzzer has at least started there. If the
next experiment also contains an output folder, then the fuzzer
has completed the previous experiment.

A.4 Evaluation Workflow

A.4.1 Major claims

In the paper, we make the following four major claims:
(M1) GDMA correctly models all Direct Memory Access

(DMA) types from state of the art data sets.
(M2) GDMA provides coverage for 6x the DMA mecha-

nisms compared to the state of the art.
(M3) GDMA improves coverage on real-world targets.
(M4) GDMA identifies 6 previously unknown bugs.
(M5) GDMA has a low false positive rate.

A.4.2 Open Science

In addition, this artifact contains the following 5 components
in accordance to the open science policy.
(O1) The diverse dataset from Table 2.
(O2) The example applications firmware dataset from Figure

6.
(O3) Ground truth metadata for the DICE dataset.
(O4) A docker-based reproduction environment for

DICE and P2IM.
(O5) The source code of GDMA.

A.4.3 Experiments

To show our major claims and open science contribution, we
provide the following experiments (eleven days runtime on
recommended machine):
(E1): Diverse data set reproduction: rebuild the diverse

dataset from its sources (10 human minutes + 0.5 CPU
hours + 45GB disk space (if docker export or import is
used), O1)

(E2): Example applications reproduction: rebuild the ex-
ample applications from its sources (10 human minutes
+ 0.5 CPU hours + 45GB disk space (if docker export or
import is used), O2)

(E4): P2IM / DICE containerized reproduction environ-
ment: A dockerized environment to build both P2IM
and DICE , and run each tool (10 human-minutes + 12h
on recommended machine + 20GB disk space, O4)

(E5-1): Dice Unit tests: Comparison to state of the art on
their unit test dataset (10 human-minutes + 48h on rec-
ommended machine + 40GB disk space, M1)

(E5-2): Dice Fuzzing tests: Comparison to state of the art
on their fuzzing dataset (10 human minutes + 24h on
recommended machine + 70GB disk space, M1)

(E6): Diverse dataset performance: Evaluation of GDMA
on the diverse dataset (10 human minutes + 48h on rec-
ommended machine + 30GB disk space, M2)

(E7): Example applications performance: Evaluation of
GDMA on the example applications dataset (10 human
minutes + 48h on recommended machine + 70GB disk
space, M3)

(E8): Finding new bugs: Evaluate if GDMA can be used
to find new bugs (10 human minutes + 24h on recom-
mended machine + 70GB disk space, M4)

(E9): False positives: Evaluate if GDMA finds false posi-
tives in P2IM unit test set or the diverse dataset (10 hu-
man minutes + 72h on recommended machine + 30GB
disk space, M5)

We split the reproduction into three parts: build target re-
production, DICE / P2IM execution environment test, and
GDMA evaluation. As the first step, enter the scripts/ direc-
tory: cd gdma-experiments/scripts. The remainder of this
section assumes that all commands are executed from within
this directory.

A.4.4 Reproducing O3

We do not provide an experiment script to reproduce O3.
Extraction of ground truth metadata was a one-time man-
ual effort, as it involved reverse-engineering the provided
firmware samples. Please find the results for DICE unit tests
in ground_truth_dice_perspective.yml2. Please find DICE
fuzzing test ground truth metadata in their respective directory,
in the config_generic_dma_manual.yml3 file.

A.4.5 Build Target Reproduction (E1-E2)

The first section of the artifact reproduction describes how to
rebuild the diverse dataset and the example applications that
we provide as part of the artifact.

Diverse Dataset (E1). To test the reproduction of the di-
verse dataset, execute the following commands:

b) Rebuild from scratch: Run

python cli.py build-2

201-dice-comparison/DICE-results/ground_truth_dice_perspective.yml
301-dice-comparison/02-real-firmware/firmware/GPS-

Receiver/config_generic_dma_manual.yml

This builds docker containers from scratch, importing the
IDEs from ides.

After successfully rebuilding the targets, execute

python cli.py update-2 -pd

, which checks for each binary if the newly-built version dif-
fers from the existing one.

Example Applications (E2). The reproduction for the ex-
ample applications follows the same idea. Execute

python cli.py build-3

for a rebuild from scratch. You can verify that all binaries
built successfully, as above, by executing

python cli.py update-3 -pd

, or by removing them before the build process and counting
them afterwards (there should be 10 binaries).

Using the new binaries. You can use the samples you built
in the previous steps to perform the evaluation. However, to
keep the overhead for you as low as possible we recommend to
use the binaries we provide. IF you want to entirely verify that
the evaluation works with the rebuilt binaries you can update
the diverse dataset binaries and the example applications with
the following commands

python cli.py update-2 -u;
python cli.py update-3 -u

. Note that this might invalidate some of the present configura-
tions as some targets require manual tweaking of the memory
maps. We advise you to first perform the evaluation with the
dataset in the archive and to test out the update mechanism af-
terwards if you are interested to further investigate this aspect
of the artifact.

A.4.6 DICE / P2im Execution Environment Test (E4)

This part builds and runs both DICE and P2IM, which is
related work that GDMA was evaluated against. The targets
for this part of the evaluation stem from the DICE evaluation
and will hence be call DICE fuzzing tests.

This comes in two flavors: one rebuilds DICE and P2IM
from scratch:

python cli.py run-dice

and creates an evaluation-ready docker container, the other
imports existing docker images from docker-saves:

python cli.py run-dice -d

Both run DICE and P2IM on the DICE fuzzing tests after-
wards.

You can modify fuzzing campaign parameters
by editing 01-dice-comparison/02-real-firmware/

01-evaluation/config.txt. We provide wrapper scripts to
directly execute DICE reruns from the scripts/ directory.
On the recommended machine, execute:

./dice_12h_3runs.sh

Investigating the results. To investigate the results navi-
gate to:

cd gdma-experiments/scripts/results/p2im_dice_results

This directory contains two subdirectories: DICEFuzzBase
and P2IMFuzzBase, which contain the data for the respec-
tive platform. The structure of each of these subdirecto-
ries is <sample>/<run>/. To investigate the results of
P2IM’s/DICE’s modeling and fuzzing please refer to the
respective projects. In addition to the various peripheral
modeling and fuzzing-related directories each run contains
a coverage folder. In there is a file that contains the total
number of basic blocks covered (bbl_cnt) and a file that
contains the mapping of inputs to the basic blocks they cover
(bbl_cov). Further each fuzzing run contains an out.txt file,
that contains a mapping between fuzzing time and total num-
ber of basic blocks covered at that time. If a directory does not
contain an out.txt file please refer to the troubleshooting
section.

To verify, whether the results of the fuzzing run match those
shown in the paper you can inspect the different out.txt files
and compare the achieved number of basic blocks with Figure
7 in the paper.

Troubleshooting. Unfortunately, in some cases the
coverage and plotting information can not be generated for
all targets even though the fuzzing worked fine. This usually
manifests itself with error messages such as:
cp: cannot stat ’p2im_dice_results/DICEFuzzBase/
Modbus/2/out.txt’: No such file or directory

To verify whether this occurred during your evaluation you
can perform the following steps:

cd gdma-experiments/scripts
find ./results/p2im_dice_results -name "out.txt"
| wc -l

The resulting number should be 11 * <runs>, where <runs>
is the number of repetitions specified through the run script
(e.g., dice_12h_3runs.sh→ <runs>=3). This "formula" is
derived by multiplying the number of targets (6) by 2 (each is
fuzzed twice: once with DICE and once with P2IM) and then
subtracting the number of repetitions once, as one sample
(MIDI-Synthesizer) does not work with P2IM, therefore, no
output file is created.

If you notice that the number of generated out.txt files is
lower than expected, we provide a script to rerun the coverage
generation, based on the data from the fuzzing runs.

To this end, you can run the following commands:

cd gdma-experiments/scripts
cd ../01-dice-comparison/02-real-firmware/
04-coverage-only/
./rerun_cov.sh ../../../scripts/results/
p2im_dice_results/../02-results

Afterward, you can do the same verification from above to
check whether the issue was fixed.

A.4.7 GDMA Evaluation (E5-E9)

This part reruns all 5 fuzzing campaigns and collects the
results in the scripts/results/ directory. To start the GDMA
evaluation immediately with default parameters, move to the
top-level directory gdma-experiments and execute:

./eval-recommended.sh

Optional Configuration. The evaluation setup is config-
urable to adapt to different availability of computing power.
We provide configurations for a range of computing power.
We recommend using one of the wrapper scripts to keep the
manual configuration effort low. Execute one of the wrapper
scripts (e.g. rerun_experiments_12h_3runs.sh) to use these
preset configurations.

If your hardware setup is incompatible with the
provided presets, you can configure the parameters
of the fuzzing campaigns in the configuration file
scripts/.experiments-config.yml. It contains 4 keys:
experiments defines which of the 5 fuzzing campaigns you
want to rerun, cores-per-experiment defines the number of
cores you assign for the fuzzing campaigns, fuzzing-time the
timeout for the fuzzer and runs-per-firmware the number of
runs of each target.

Running the evaluation. If you want to perform the evalu-
ation on recommended hardware and settings, execute:

./eval-recommended.sh

in gdma-experiments directory root. You can run the
full evaluation with preselected parameters by ex-
ecuting one of the provided wrapper scripts (e.g.
rerun_experiments_12h_3runs.sh). The scripts run all
fuzzing campaigns with the parameters indicated in the
wrapper name. Afterwards, it performs all evaluations,
placing the results in the scripts/results/ directory.

If you have similar or better hardware resources than those
used by us in our evaluation (see A.2.4), we you can run the
full evaluation as ran by us. To do that, enter the scripts

directory and execute the script:

rerun_experiments_24h_10runs.sh

However, we understand that not everybody has access to
such resources. If this is the case for you, we recommend to
execute

rerun_experiments_12h_3runs.sh

from inside the scripts directory. This requires less than 25%
of compute time, and yields comparable results. Note that the
x-axis (the time scale) of the resulting plots will differ. Edit
and use python estimate_runtime.py to estimate the runtime
for a given number of execution time, runs and cores.

Investigating the results. The scripts/results directory
contains all evaluation artifacts.

01_unit.txt (E5-1). This contains an ASCII version of
Table 7 in the paper.

02_fuzzing.pdf (E5-2). This contains the coverage plots
of the DICE fuzzing targets (Figure 7 in the paper). If you
did not run the DICE / P2IM environment test (see A.4.2),
the data for plotting DICE and P2IM is equal to that used
in the paper. Running the DICE / P2IM environment test
automatically overwrites the old data with the latest results.

02.txt (E6). This file contains information about password
characters found in the diverse dataset. It marks a target as
successfully executed if some password character were found.
It requires 1 identified password character if a single DMA
buffer was involved, or 2 password characters (1 per buffer)
if two buffers were involved.

02-fp.txt (E9). This is the result file of diverse dataset
false-positive analysis. This analysis compares the DMA con-
figurations identified by GDMA to a manually constructed
ground truth and reports differences.

03-cov.pdf (E7). The coverage plots for the example appli-
cation dataset (Figure 6 in the paper).

04.txt (E8). This experiment replays all reproducer inputs
to verify that they indeed crash the target. If you want to verify
the CVEs found by GDMA, you need to manually inspect the
crashes that your run found. Please find the raw output of the
fuzzing campaign in 04-finding-new-bugs/output/. Note
that the crashes are not necessarily triggering the identified
CVEs. Also, note that depending on your execution time,
some bugs may not be found, as the time to crash is high for
some bugs.

05.txt (E9). This experiment investigates if
dma_config.yml files were created for any of the P2IM unit
tests. The existence of any dma_config.yml is a false positive.

A.5 Notes on Reusability

Our artifact uses a python script as main tool to rerun our
experiments. This section contains information on how to
use all parts individually. Each of the following commands is
invoked as

python cli.py <headline>
e.g. python cli.py run-experiments

python cli.py --help gives a brief overview over each com-
mand, and each subcommand also has an individual --help
output.

A.5.1 Running the Campaigns

run-experiments. Runs the actual fuzzing campaigns. Is
configured via the .experiments-config.yml file. This file
controls the parameters of the fuzzing run. Use the -r flag to

actively select the configuration, otherwise the default config-
urations in the directories of the fuzzing run will be used. Use
-d to perform a dry-run: it prints all the commands instead of
running them.

A.5.2 Evaluating the Campaigns

eval-1-1. Builds the unit test table (Table 7 in the paper). By
default, builds a human readable table (ASCII art style). Pass
--latex to get latex code for the table (this is also used in the
paper).

eval-1-2. Builds the plot for the DICE Fuzzing targets
(Figure 7 in the paper). You can pass directories that contain
the output from an experiment run via command line flags
(use --help to see which ones) relative to the repository root.
By default, it uses paths as present in the repository structure.
Use --runtime and --num-runs to set the correct runtime and
number of runs per target.

eval-2. Evaluates the functionality of the DMA emulation
mechanism. This takes the results of a fuzzing campaign on
the diverse data set and confirms that GDMA found password
characters. If there was a single consecutive buffer in memory,
the evaluation checks for the discovery of the first password
character. If the DMA mechanism uses two buffers, the eval-
uation checks whether GDMA found password characters for
both buffers. Use --results to pass an alternative path to the
output of run-experiments.

eval-2-fp. Check that GDMA found the correct DMA con-
figuration during its run. We compare the Memory-mapped
I/O (MMIO) register and the written buffer pointer to com-
pare configurations. Note that some targets have a non-
deterministic way of providing a DMA channel, and conse-
quently, multiple MMIO registers are correct. --data points
to the results of the fuzzing campaign, --groundtruth-root
points to a directory that contains the reference configurations.

eval-3. Build the coverage plots for the real-world targets
(E3, Figure 6 in the paper). Interface is similar to eval-1-2.

eval-4. Rerun the bug reproducers found in the reposi-
tory and investigate if they crash. Pass target directory with
--targets.

eval-4-hooks. Rerun the reproducers found in the repos-
itory with a special configuration that prints Heureka when
found. If you pass -f, a new fuzzing campaign is started that
prints Heureka when the bugs are triggered.

eval-5. False positive analysis. Search for dma_config.yml
in the results directory of experiment 5.

A.5.3 Rebuilding the Targets

build-2. Rebuild targets for E1. This comes in two flavors: the
default is a full rebuild from scratch. This requires the pres-
ence of several proprietary IDEs which we cannot provide in
the final repository (after Artifact evaluation) due to legal rea-
sons. Please see the readme.md files of the individual targets

for details on how to obtain them via the official channels.The
full rebuild builds docker images and runs the build process
in docker, moving the final build binaries in the respective
output folder. If you pass -e, then the docker image will be
saved for later reuse. If you pass -d, docker images will be
loaded from the docker-saves folder in the repository root
(assuming you exported them before). These docker saves
contain the IDE setups and will build binaries during the run.

update-2. Check if the binaries found in the output folders
of the dataset for E2 match the ones used in the evaluation.
If you pass -pd, a diff is printed. If you pass -u, binaries
that are not identical will be updated (and also get a new
config_autogen.yml).

build-3. build-2, but for E2 targets.
update-3. update-2, but for E2 targets.
run-dice. Build P2IM and DICE , the related work tools

that we evaluate against. Similar to the interface of build-2.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Setup
	Installation
	Basic Test

	Evaluation Workflow
	Major claims
	Open Science
	Experiments
	Reproducing O3
	Build Target Reproduction (E1-E2)
	DICE / P2im Execution Environment Test (E4)
	GDMA Evaluation (E5-E9)

	Notes on Reusability
	Running the Campaigns
	Evaluating the Campaigns
	Rebuilding the Targets

	Version

