ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: SCASE: Automated Secret
Recovery via Side-Channel-Assisted Symbolic Execution

Daniel Weber Lukas Gerlach Leon Trampert
CISPA Helmholtz Center CISPA Helmholtz Center CISPA Helmholtz Center
for Information Security for Information Security for Information Security

Youheng Lii Jo Van Bulck Michael Schwarz
SCHUTZWERK GmbH DistriNet, KU Leuven CISPA Helmbholtz Center

A Artifact Appendix

A.1 Abstract

This paper proposes SCASE, a novel methodology for infer-
ring secrets from an opaque victim binary using symbolic
execution guided by a concrete side-channel trace. Our key
innovation is utilizing the memory accesses observed in the
side-channel trace to prune the symbolic-execution space, thus
avoiding state explosion. To demonstrate the effectiveness
of our approach, we introduce Athena, a proof-of-concept
framework to recover secrets from Intel SGX enclaves via
controlled channels automatically. We show that Athena can
automatically recover the 2048-bit secret key of an enclave
running RSA and the 256-bit key from an RC4 KSA im-
plementation. Furthermore, we demonstrate key recovery of
OpenSSL’s 256-bit AES S-Box implementation and recover
the inputs to OpenSSL’s binary extended Euclidean algo-
rithm. To demonstrate the versatility of our approach beyond
cryptographic applications, we further recover the input to a
poker-hand evaluator. Our findings indicate that constraining
symbolic execution via side-channel traces is an effective
way to automate software-based side-channel attacks without
requiring an in-depth understanding of the victim application.

A.2 Description & Requirements

The majority of our artifact only requires a Linux installation
supporting Python 3 and a recent angr' installation. For re-
covering the 2048-bit RSA key, a machine with at least 64
GB of RAM is required. The only (optional) hardware re-
quirement is required to regenerate the memory traces for the
2048-bit RSA key. For regenerating the memory traces for the
2048-bit RSA key, which we consider an optional experiment
as we provide the traces alongside our artifact, an Intel SGX
machine is required.

"https://github.com/angr/angr

for Information Security

A.2.1 Security, privacy, and ethical concerns

Our framework does not pose any security, privacy, or ethical
concerns, as it only executes Python code. Nevertheless, the
(not required) execution of our ptrace tracer requires the user
to disable ASLR. For this, scripts exist to dis- and enable
ASLR in the corresponding folder. Furthermore, our artifact
contains real-world code used as meaningful victim applica-
tions. While the source code of these applications is publicly
available, we cannot guarantee that the code is free of security,
privacy, or ethical concerns. To the best of our knowledge, the
code does not contain any such concerns.

A.2.2 How to access

The artifact is publically available on GitHub
https://github.com/cispa/scase.

Furthermore, the artifact is archived on Zenodo with DOI
https://doi.org/10.5281/zenodo.15609410. Note that,
when fetched from Zenodo, the file scase-traces-*.zip
needs to be extraced to . /traces.

A.2.3 Hardware dependencies

Our artifact requires a Linux machine with at least 62 GB of
allocatable RAM. The optional regeneration of the memory
traces for the RSA key requires an Intel SGX machine.

A.2.4 Software dependencies

Our installation instructions are written for Ubuntu 22.04, but
the artifact should work on most recent Linux distributions.
We require Python 3.10 or higher, an angr installation, and at
least 62 GB of allocatable RAM.

A.2.5 Benchmarks

Our artifact contains the memory traces used during the eval-
uation of our framework. These memory traces are CSV files


https://github.com/angr/angr
https://github.com/cispa/scase
https://doi.org/10.5281/zenodo.15609410

containing the memory accesses of the victim application.
While we provide instructions on regenerating the memory
traces, users are free to use the provided memory traces.

A.3 Set-up
A.3.1 Installation

After cloning the repository, create a virtual environment and
install the required dependencies described under “Dependen-
cies” in the athena/README . md file.

A.3.2 Basic Test

To run a basic test, execute the following command (after
loading the virtual environment and from within the folder
./athena): python3 ./hex_elf.py. Upon successful exe-
cution, the output should contain Encoded solution: 8.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Athena can automatically recover secrets for varying
granularities of memory traces, which are not recovered
without memory trace guidance. This is shown by Exper-
iment E1 (Section 5.1.1) and Experiment E6 (Sections
5.1.2 and 5.2).

(C2): Athena can recover an AES key from OpenSSL’s S-
Box implementation and the input of OpenSSL’s binary
extended Euclidean algorithm implementation. This is
shown by Experiment E2 (Section 5.3) and Experiment
E3 (Section 5.4).

(C3): Athena can recover the input to an RC4 KSA imple-
mentation. This is shown by Experiment E4 (Section
5.5).

(C4): Athena can recover the input to non-cryptographic ap-
plications, as demonstrated by its applicability to the
TPT hand evaluator. This is shown by Experiment ES
(Section 5.6).

A.4.2 Experiments

To ease the reproduction of our results, we provide precom-
piled victim applications and memory traces in the traces
folder. The Athena framework uses angr to perform symbolic
execution on these binaries. Thus, the scripts, also referred to
as Athena wrappers in the latter, never actually execute these
binaries but rather emulate their execution. Experiment E7
(optional) describes how to recompile the victim applications
and regenerate the memory traces. Note that the regeneration
of the traces requires an Inte]l SGX machine with SGX-Step”
installed, which is not required for the other experiments.

2https://github.com/jovanbulck/sgx-step

(E1): [Jump-Table Example] [30 human-minutes + 2
compute-hours]: This experiment shows Athena recov-
ering the key from our Jump-table toy victim.

How to: The Athena wrapper for this can be found in
./athena/hex_elf_eval.py. Our results, which are
used in Figures 5 and 6 of the paper, can be found in
traces/jump-table/. The victim program’s code can
be found in . /victim-programs/jump-table/
Preparation: Traverse to the folder . /athena and load
the installation’s venv.

Execution: Execute python3 ./hex_elf_eval.py
and python3 ./hex_elf_eval_noprune.py. This
generates subfolders with the following structure:
eval_data_g_<bytelength>_<option>. When
<option> equals noprune, the symbolic execution is
not pruned by the side-channel trace.

Results: The resulting statistics are contained in the
file statistics.csv for each subfolder. These (ac-
cumulated) numbers correspond to the paper’s Fig-
ures 5 and 6. The most noteworthy result is that the
<...>_noprune subfolders should indicate that the
value could not be recovered. This can be confirmed
by checking the column incorrect_bytes in the corre-
sponding statistics.csv file.

(E2): [AES S-Box] [30 human-minutes + 30 compute-
minutes]: This experiment shows Athena recovering the
symmetric key from OpenSSL’s AES S-Box implemen-

tation.
How to: The Athena wrapper for this can
be found in ./athena/aes_openssl.py.

The victim program’s code can be found in
./victim-programs/openssl-aes-sbox/.
Preparation: Traverse to the folder . /athena and load
the installation’s venv.
Execution: Execute python3 ./aes_openssl.py.
This recovers the 256-bit AES key and
prints  whether the key is correct.  The
key can be verified by checking the file
./victim-programs/openssl-aes-sbox/victim.c.
The command python3 ./aes_openssl_eval.py
can be used to execute the experiment for different
memory trace granularities.
Results: The execution of aes_openssl.py should
print that the key was successfully recovered. The ex-
ecution of aes_openssl_eval.py creates two folders
eval_data_g01 and eval_data_g0l_dfonly, where
the latter restricts the guidance to the data-flow trace.
Both folders contain a file statistics.csv, which con-
tains the detailed statistics (similar to E1). The number
of incorrect bytes for e should align with the paper’s
Table 1.

(E3): [BEEA] [30 human-minutes + 1 compute-hour]:
This experiment shows Athena recovering the key
from OpenSSL’s binary extended Euclidean algorithm


https://github.com/jovanbulck/sgx-step

(BEEA) implementation.

How to: The Athena  wrapper for this can
be found in ./athena/beea_openssl.py.
The victim program’s code can be found in
./victim-programs/openssl-beea/.

Preparation: Traverse to the folder . /athena and load
the installation’s venv.

Execution: The experiment can be executed by running
python3 . /beea_openssl.py. This recovers the sec-
ond argument to BN_gcd. Note that this takes around
10-14 hours to finish.

Results: The execution of aes_openssl.py should
print the key contained in the variable p_min_one from
./victim-programs/openssl-beea/main.c.

(E4): [RC4-KSA] /30 human-minutes + 5 compute-

minutes]: This experiment shows Athena can recover
the RC4 key from a key scheduling algorithm (KSA)
implementation.

How to: The Athena wrapper for this can be found
in ./athena/rc4_elf.py. The victim program’s code
can be found in . /victim-programs/rc4-ksa/.
Preparation: Traverse to the folder . /athena and load
the installation’s venv.

Execution: Execute python3 ./rcd_elf.py.
This recovers the key from
victim-programs/rcd-ksa/main.c.

Results: The execution of rc4_elf.py should
print the key recovered from the binary.
This key should match with the content of
./victim-programs/rcd-ksa/key.hex.

(E5): [TPT Hand Evaluator] [30 human-minutes + 2

compute-minutes]: This experiment shows Athena can
recover secrets from non-cryptographic applications, in
this case, the input to a poker-hand evaluator.

How to: The Athena  wrapper for this can
be found in ./athena/poker_elf.py. The
victim program’s code can be found in
./victim-programs/tpt-hand-evaluator/.
Preparation: Traverse to the folder ./athena
and load the installation’s venv. Additionally, un-
pack the binaries contained in the tar balls in
./traces/tpt-hand-evaluator/. For this, run find
. —name ’*.tar.gz’ -exec tar -xzvf {} \;
from within the folder.

Execution: The experiment  can be exe-
cuted by running python3 ./poker_elf.py.
This recovers the card  array from
victim-programs/tpt-hand-evaluator/test.c.
Results: The execution of poker_elf.py should
print the array contained in the variable cards in
./victim-programs/tpt-hand-evaluator/test.c.
As we executed this program multiple times with varying
inputs, the folder ./traces/tpt-hand-evaluator/
does not only contain the binaries and memory traces

but also the expected outcomes for each input. The com-
binations of input and expected output are enumerated.
For example, the files cftracel.csv, dftracel.csv,
victiml, and solutionl.txt belong together.

(E6): [Intel SGX Square+Multiply Enclave] [2 human-hours
+ 10 compute-minutes]: This experiment recovers a
2048-bit key from an Intel SGX enclave implementa-
tion of a toy Square+Multiply algorithm.

How to: The Athena wrapper for this can
be found in ./athena/sm_enclave.py. The
victim program’s code <can be found in
./victim-programs/square-multiply-enclave/.
Preparation: Traverse to the folder . /athena and load
the virtual environment from the installation.
Execution: The experiment can be executed by running
python3 ./sm_enclave.py.

Results: The printed  key should  match
the wvariable secret contained in the file
square-multiply-enclave/encl.c.

(E7 - Optional): [Victim Recompilation and Trace Regener-

ation] /4 human-hours + 2 compute-hours]: This exper-
iment is about recompiling the victim applications and
regenerating the memory traces provided in . /traces/.
How to: For each victim application, the correspond-
ing folder contains a README.md file with com-
plication instructions, e.g., the instructions to re-
compile the Jump-Table example are found in
./victim-programs/jump-table/README.md.
Preparation: The Jump-Table example does not re-
quire any special preparation besides a gcc installation.
The AES and BEEA examples require the corresponding
OpenSSL library to be compiled. The hand evaluator re-
quires a g++ installation. The Square+Multiply Enclave
requires Intel SGX and SGX-Step installed.
Execution: Follow the instructions in
victim-programs/<victim>/README.md to  re-
compile the victim application and regenerate the
memory traces.
Results: The binaries and traces should match the ones
provided in . /traces/<victim>. Note that due to vary-
ing environments, it is unlikely that the binaries and re-
sulting traces are identical. One can copy the resulting
binaries and memory traces to the corresponding folder
in . /traces/ rerun the corresponding experiment.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


