
USENIX Security ’25 Artifact Appendix:
SoK: Automated TTP Extraction from CTI Reports – Are We There Yet?

Marvin Büchel†,1, Tommaso Paladini†,2,6, Stefano Longari2, Michele Carminati2, Stefano Zanero2,
Hodaya Binyamini4, Gal Engelberg4, Dan Klein4, Giancarlo Guizzardi3, Marco Caselli5, Andrea

Continella3, Maarten van Steen3, Andreas Peter1, and Thijs van Ede3

1Carl von Ossietzky Universität Oldenburg, 2Politecnico di Milano, 3University of Twente,
4Accenture Labs, 5Siemens AG, 6NEC Laboratories Europe

A Artifact Appendix

A.1 Abstract

This Artifact Appendix covers the experiments and the result-
ing main conclusions from our Empirical Analysis part of the
SoK paper. As already mentioned in the paper, it is not about
the absolute values, but the relative comparisons among each
other, especially in the approaches itself. All experiments are
for evidence only and are not intended to present a new high-
performance prototype. For this reason, we aim to evaluate
the relative trends in the approaches. Our artifact is structured
in three main sub-projects, each requiring their own setup.
Each sub-project (NER, classification, generation) can
be found in a folder inside the main directory of the artifact,
and contain the code related to the corresponding systemati-
zation experimental section. NER: Contains the code related
to the NER approaches (Sections 2.2, 4); classification:
Contains the code related to the Classification approaches
(Sections 2.3, 5); generation: Contains the code related to
the Generation approaches (Sections 2.4, 6).

A.2 Description & Requirements

This artifact has been executed on a server mounting two
NVIDIA L40 GPUs with 48GB VRAM, 1024GB RAM,
and two AMD EPYC 7763 CPUs. The server runs Ubuntu
22.04.04 (jammy), with CUDA version 12.4.

A.2.1 Security, privacy, and ethical concerns

Our artifact strictly contains regular Machine Learning pre-
processing, training, and testing routines to build NLP models
that extract TTPs from CTI reports. They require no destruc-
tive steps on the original system, nor disabling of security
mechanisms during execution. Therefore, we believe that no

†Authors contributed equally to this work.

specific risks for researchers, practitioners, and evaluators
should be encountered.

A.2.2 How to access

Access to our artifact is provided via Zenodo Repository: ht
tps://zenodo.org/records/15608555. This repository is
mirrored by our GitHub repository1 (code), and our Hugging
Face repository2 (models).

A.2.3 Hardware dependencies

We recommend having at least 48GB of GPU VRAM and
300GB of storage.

A.2.4 Software dependencies

Our artifact partly depends on the DarkBERT3 model, which
requires an access token key by contacting the authors of the
paper to be downloaded.

A.2.5 Benchmarks

Our artifacts require the following datasets: TRAM2, and
AnnoCTR. Both are provided directly in our repository, in the
dataset folder.

A.3 Set-up
Our artifact requires Docker4 installed on the target system.
We have tested our artifact with Docker version 25.0.3, build
4debf41. In addition, fine-tuned models and pre-calculated
embeddings should be directly downloaded from our Hugging
Face repository in Section A.2.2.

1https://github.com/MarvinBuechel/SoK_CTI_TTP
2https://doi.org/10.57967/hf/5736
3Jin, Youngjin, et al. “Darkbert: A language model for the dark side of

the internet.” arXiv preprint arXiv:2305.08596 (2023).
4https://www.docker.com/

https://zenodo.org/records/15608555
https://zenodo.org/records/15608555
https://github.com/MarvinBuechel/SoK_CTI_TTP
https://doi.org/10.57967/hf/5736
https://www.docker.com/


A.3.1 Installation

First, install Docker following the instructions reported on
the tool website5.

Second, clone our repository using the link provided in
Section A.2.2.

NER. Navigate to the CTISOK/NER directory. To install all the
required resources, we recommend building the Dockerfile
by running: “$ docker build . -t ner”

Classification. Make sure to be located in the
CTISOK/classification folder. Download from our
Hugging Face repository the directories fine_tuned.tgz,
containing our BERT-based fine-tuned models,
local.tgz, containing some pre-trained models, and
nvidia_embeddings.tgz, containing pre-calculated embed-
dings. Decompress them with “$ tar zxvf archiveName”.
The first two folders (fine_tuned, local) must be lo-
cated in the root of this sub-project. The content of the
second folder must be moved inside the datasets direc-
tory (after decompressing it you should already see this
content inside the folder, otherwise you can run “$ mv
nvidia*.pickle datasets/”). At last, you should run
the following command to build the Docker image: “$
docker build --build-arg RUN_DEVICE=YOUR_DEVICE
-t sok-classification .”, where YOUR_DEVICE should
point to a GPU (e.g., cuda, cuda:0, etc.).

Generation. Navigate to the CTISOK/generation direc-
tory. Build all docker containers and run all experiments by:
“$ docker compose up --build -d”. This automatically
downloads the required base models (Meta LLama3.1 8B and
GTE-Qwen2-7B for RAG) and involves the installation of an
ollama server6 for the RAG model and a Python environment
that starts the Generation experiments automatically.

As runtime inference environment for the generative model,
we used the Python library unsloth7 in version 2024.12.4
with the transformers8 library version 4.44.2. Unfortu-
nately, we could no longer reproduce this combination of de-
pendencies, which is why we switched to the newer versions
unsloth==2025.03.19 and transformers==4.51.1. This
results in the behavior as described in chapter 6.2 - Prompt
based, that the LLM suffers from instability and sometimes
gets into a loop in which all MITRE IDs are output, which
increases the recall, but reduces the precision and accordingly
changes the F1 score.

A.3.2 Basic Test

NER. To run the minimal working example, execute the fol-
lowing line: “$ docker run ner”. This script will test the

5https://docs.docker.com/engine/install/
6https://github.com/ollama/ollama
7https://github.com/unslothai/unsloth
8https://github.com/huggingface/transformers

Docker image by executing the ablation study presented in
Table 5 of our work.
Classification. You can run a basic test by executing:
“docker run --gpus all -it sok-classification”.
This script checks that models and data are correctly loaded,
and perfors a small test by producing part of the results
shown in Table 6 of our work.
Generation. To run a minimal test, navigate
to the generation folder and execute: “docker
build -t minimal -f Dockerfile.minimal .”
followed by: “docker run --volume
./experiments:/workspace/finetuning/experiments
--gpus all minimal” This loads a 4-bit quantized model
that repeats the "Raw" experiment from Table 9 on the
AnnoCTR dataset in “./experiments/minimal.csv”.
Although the quantized model is significantly smaller, it still
requires approximately 8GB VRAM.

A.4 Evaluation workflow
Our evaluation workflow is subdivided according to the
three sub-projects (NER, Classification, Generation). We also
present a subsection for claims that require results from all
three approaches (All). For convenience, here, experiments
are named after the tables and figures of the paper that show
these results.

A.4.1 Major Claims

NER (N).
(N.C1): Individual pipeline components contribute to im-

proving the recall of NER approaches at the cost of false
detections.

Classification (C).
(C.C1): Labeled classification approaches achieve higher

performances than unlabeled approaches.
(C.C2): CTI-specific classification models do not consis-

tently outperform generic models.
(C.C3): Data augmentation provides a small margin of im-

provement for labeled approaches.

Generation (G).
(G.C1): Finetuning is the best performing method for genera-

tive LLMs and outperforms in-context learning methods.
(G.C2): Data augmentation does not replace high-quality

datasets.
(G.C3): RAG on document-level granularity performs worse

than at sentence level.

All (A).
(A.C1): Traditional NER approaches outperform both Clas-

sification and Generation when no prior information
about test data is available and over increasing amount
of TTP labels. In general, performances drop with in-
creasing amount of TTP labels.

https://docs.docker.com/engine/install/
https://github.com/ollama/ollama
https://github.com/unslothai/unsloth
https://github.com/huggingface/transformers


A.4.2 Experiments

(N.E1): [Table 5] [30 human-minutes + 30 compute-
minutes]: creates all NER pipelines and runs the ablation
study on the TRAM2 and AnnoCTR datasets (presented
on Table 5 of our paper).
Execution: Run: “$ docker run -it ner bash” in
CTISOK/NER directory. Run “$ ./ablation.sh” inside
the container.
Results: Results of all pipelines are stored in the
/NER/experiments/results directory. They should
be compared with results provided in Table 5 of our
paper.

(C.E1): [Table 6 and 7] [30 human-minutes + 2 compute-
hours]: run the fine-tuned models (labeled approach),
and the unlabeled models (with pre-calculated deci-
sion thresholds) on the TRAM2 and AnnoCTR datasets.
These results are shown in Table 6 and 7 of our paper.
Preparation: Open directory
“CTISOK/classification”. Make sure you have non-
empty:
“fine_tuned/tram_swipe”,
“fine_tuned/bosch_swipe”, and
“configs/all_sentence_similarity.json”. Make
sure you have “nvidia-*embeddings.pickle” inside
the “datasets” folder.
Execution: First, you need to enter the shell of the
docker container. You can do so by running: “$ docker
run --gpus all -it sok-classification bash”.
Then, you should run the following commands:
“$ ./artifact_eval/gen_table_6_annoctr.sh”
“$ ./artifact_eval/gen_table_6_tram.sh”
“$ ./artifact_eval/gen_table_7.sh”
“$ ./artifact_eval/gen_table_7_nvidia.sh”
Results: Compare Table 6 with the output of the first
two scripts. Compare Table 7 with the output of the last
two scripts.

(C.E2): See C.E1. Such procedure generates the same tables
of our original work that support this claim (Tables 6, 7).

(C.E3): [Table 8] [5 human-minutes + 5 compute-minutes]:
run the models fine-tuned on augmented datasets and
test them on the TRAM2 dataset.
Preparation: Make sure you have the folder named
“fine_tuned/data_augmentation” (non-empty).
Execution: Enter the shell of the docker con-
tainer. Run: “$ docker run --gpus all -it
sok-classification bash”. Then, you should run
the following command:
“$ artifact_eval/gen_table_8.sh”
Results: Compare the results printed by the script with
Table 8 of our paper.

(G.E1): [Table 9] [5 human-minutes + 24 compute-hours]:
Runs the model on TRAM2 and AnnoCTR datasets with
all the methods presented.

Execution: Run: “$ docker compose up --build
-d” in the CTISOK/generation directory to also exe-
cute G.E2 and G.E3 experiments.
Results: Results are located at CTISOK/generation
/experiments/table9_methods.csv.

(G.E2): [Table 10] Trains the base model on the TRAM2
augmented dataset and evaluates it on the TRAM2 test
set.
Execution: See G.E1.
Results: Results are located at CTISOK/generation
/experiments/table10_augmented_data.csv.

(G.E3): [Table 11] Runs in-context learning methods on a
document-level granularity on TRAM2 and AnnoCTR
datasets.
Execution: See G.E1.
Results: Results are located at CTISOK/generation
/experiments/table11_document_level.csv.

(A.E1): [Figure 4] [30 human-minutes + 1 compute-hour]: in
this experiment, we produce the data required for obtain-
ing Figure 4 of our paper, which shows the comparison
between all approaches on the TRAM2 dataset. Follow-
ing the color legend proposed in Figure 4, in blue, we
explain the parts related to NER, in red, the parts related
to classification, in green, the parts related to generation.
Execution (NER): Open directory “NER”. Enter the
shell of the docker container. Run “$ docker run -it
ner bash”. Then, run the following command: “$
./open_set_scenario.sh”
Results (NER): Results are located in
“results/OpenSet/*.txt”.
Preparation (Classification): Make sure you have
“configs/open_set_scenario.json”.
Execution (Classification): Open directory “clas-
sification”. Enter the shell of the docker con-
tainer. Run: “$ docker run --gpus all -it
sok-classification bash”. Then, run the following
command:
“$ ./artifact_eval/gen_figure_4.sh”
Results (Classification): The results (F1, Precision, Re-
call) printed by the script should generate a figure similar
to the one presented in Figure 4.
Execution (Generation): Run: “$ docker compose
up --build -d” in CTISOK/generation folder.
Results (Generation): The results are located at
CTISOK/generation/experiments/figure4_open_set.csv

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


