
USENIX Security ’25 Artifact Appendix: Prompt Obfuscation for Large
Language Models

David Pape1, Sina Mavali1, Thorsten Eisenhofer2,3, Lea Schönherr1

1CISPA Helmholtz Center for Information Security
2Berlin Institute for the Foundations of Learning and Data (BIFOLD)

3Technische Universität Berlin

A Artifact Appendix

A.1 Abstract
This artifact provides the source code and framework for a
prompt obfuscation method that safeguards the intellectual
property of system prompts by creating functionally equiva-
lent, unintelligible representations. It implements two tech-
niques: a ’hard’ method in the discrete token space and a
’soft’ method in the continuous embedding space. The artifact
includes code to evaluate obfuscated prompts, run deobfusca-
tion attacks (e.g., prompt extraction, projection, and fluency
optimization), compare against a LoRA finetuning baseline,
and automatically download all required public models and
datasets.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The provided artifact poses no security or privacy risks to the
evaluator. The experiments exclusively use publicly available
datasets and models downloaded from HuggingFace. Fur-
thermore, the artifact does not perform any destructive file
operations outside of its own designated output directories.

A.2.2 How to access

The artifact is available on Zenodo: https://doi.org/10.
5281/zenodo.15601914.

A.2.3 Hardware dependencies

A GPU is required for running this artifact. We recommend
using an environment with an NVIDIA GeForce RTX 3090 or
more powerful GPU. Around 35GB of disk space is needed to
store the main language model, datasets, and other supporting
models downloaded from Hugging Face. All experiments
reported in the paper were conducted on a single NVIDIA
A100 GPU with 40 GB of VRAM.

A.2.4 Software dependencies

All experiments were conducted in a conda environment with
Python 3.12.7 on Ubuntu 22.04.4, though any operating sys-
tem supporting Python works. All necessary dependencies
are listed in requirements.txt in the artifact, with detailed
installation instructions outlined in Section A.3.1.

A.2.5 Benchmarks

The artifact relies on several publicly available models,
datasets, and a set of curated prompts, all of which are es-
sential for reproducing the experiments reported in the paper.

• Models: The primary model used is Llama 3.1-8B,
which is automatically downloaded from Huggingface.
Please note that this is a gated model requiring explicit
agreement to Meta’s Community License. Supporting
models for evaluation are also downloaded automatically
from the Hugging Face Hub.

• Datasets: Our experiments utilize four public datasets:
TruthfulQA, TriviaQA, CNN/DailyMail, and Samsum.
The provided data loaders automatically download and
process the correct versions of these datasets from the
Hugging Face Hub.

• Prompt Extraction Queries: The set of 105 prompt
extraction queries from Zhang et al. used for the at-
tack evaluation in Section 6.1 is included directly
within the artifact at extraction_prompts/gpt4_
generated.json.

A.3 Set-up
A.3.1 Installation

First, download the artifact from Zenodo and extract it. We
recommend creating a new virtual environment with Python
3.12.7 (e.g., using conda):

conda create -n prompt_obfuscation python =3.12.7
conda activate prompt_obfuscation

https://doi.org/10.5281/zenodo.15601914
https://doi.org/10.5281/zenodo.15601914
requirements.txt
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://arxiv.org/abs/2307.06865
extraction_prompts/gpt4_generated.json
extraction_prompts/gpt4_generated.json


Next, install all necessary dependencies:

pip install -r requirements.txt

After account creation and access is granted to Llama 3.1, log
in using the following command:

huggingface -cli login

Note: All models and datasets are downloaded to ~/.cache/.
To change the default path, you can run:

export HF_HOME="/new/path"
export SENTENCE_TRANSFORMERS_HOME="/new/path"
export NLTK_DATA="/new/path"

A.3.2 Basic Test

We provide the script basic_test.py to perform a
lightweight functionality test that checks the correct setup
of all core software components and hardware dependencies.
To run the test, execute the following command from the
project’s root directory.

python3 basic_test.py

The script will print detailed progress for each step. A success-
ful execution concludes with the final confirmation message:
"All Basic Tests Passed Successfully! The environment is set
up correctly and all core components are functional."

A.4 Evaluation workflow

A.4.1 Major Claims

Our paper makes the following major claims:

(C1): Hard prompt obfuscation preserves the utility of the
original prompt but is susceptible to information leakage.
This is proven by experiments (E1) and (E2), described
in Section 5.1, with results in Tables 1 and 2.

(C2): Soft prompt obfuscation effectively preserves the func-
tionality of conventional system prompts across diverse
tasks and in a real-world scenario. This is proven by ex-
periments (E3) and (E4), described in Sections 5.2 and
5.3, with results in Tables 4, 5, 11, and 12.

(C3): Prompt obfuscation is a competitive alternative to fine-
tuning, achieving similar utility with significantly lower
storage overhead. This is proven by experiment (E5),
described in Section 5.4, with results in Table 6.

(C4): Obfuscated soft prompts are robust against prompt
extraction and direct projection attacks. This is proven
by experiments (E6) and (E7), described in Sections 6.1
and 6.2, with results in Tables 7 and 8.

(C5): Under a white-box threat model, a fluency optimization
attack can partially recover human-readable fragments.
This is proven by experiments (E8) and (E9), described
in Section 6.3, with results in Tables 9 and 10.

A.4.2 Experiments

The following experiments provide the steps to reproduce
the evidence for the major claims. Each is demonstrated
with a representative example. To facilitate quick verifi-
cation of computationally intensive experiments, precom-
puted results for specific styles are provided in the artifact’s
precomputed_results/ directory. All other results reported
in the paper can be reproduced by running the provided scripts
with different parameters (e.g., --style, --dataset_name).
For a comprehensive list of arguments, please refer to the main
README.md. A complete list of available style identifiers is
defined in src/style_prompts.py and listed in Appendix A
of the paper. Note: The estimated compute times and VRAM
requirements may vary slightly depending on the specific
style and dataset chosen.
(E1): [Hard Prompt Obfuscation Utility] [12 compute-hours,

23GB VRAM]: This experiment evaluates obfuscated
hard prompt utility against baselines.
How-to: We provide scripts for "Full", "Style", and
"Task" scenarios. The "Task" scenario script is run once,
while others are run for each style.
Execution: To reproduce the "Full" scenario for the
‘pirate‘ style:

./bash_scripts/hard_prompt_obfuscation_full.sh
--style pirate

For the "Style" and "Task" scenarios, run
hard_prompt_obfuscation_style.sh --style
<style> and hard_prompt_obfuscation_task.sh,
respectively.
Results: Outputs are in their respective subdirectories
(e.g., results/hard_pirate_full/). The key files to
verify against Table 1 are:

• best_candidate_scores.json (’obf’ column)
• blank_output_scores.json (’blank’ column)
• original_output_scores.json (’original’ col-

umn)
(E2): [Hard Prompt Information Leakage] [30 compute-

seconds, 1.5GB VRAM]: This experiment quantifies
information leakage from the best hard prompt.
How-to: This script requires the results directory from
a corresponding (E1) experiment.
Execution: To evaluate leakage for the ’Full’ ‘pirate‘
scenario from (E1):

./bash_scripts/compare_hard_prompt_leakage.sh
--results_dir results/hard_pirate_full

Results: The key files to verify against Table 2 are obf_
sys_prompt_scores.json (’obf’ column) and rand_
sys_prompt_scores.json (’rand’ column).

(E3): [Soft Prompt Obfuscation Utility] [4 compute-hours,
25GB VRAM]: This experiment evaluates obfuscated
soft prompt utility against baselines.
How-to: Similar to (E1), we provide scripts for "Full",

~/.cache/
basic_test.py
precomputed_results/
--style
--dataset_name
README.md
src/style_prompts.py
results/hard_pirate_full/
best_candidate_scores.json
blank_output_scores.json
original_output_scores.json
obf_sys_prompt_scores.json
obf_sys_prompt_scores.json
rand_sys_prompt_scores.json
rand_sys_prompt_scores.json


"Style", and "Task" scenarios, which take --style and
--dataset_name arguments (except for the task script,
which only needs --dataset_name).
Execution: To reproduce the "Full" scenario for the
‘pirate‘ style on ‘truthfulqa‘:

./bash_scripts/soft_prompt_obfuscation_full.sh
--style pirate --dataset_name truthfulqa

Results: The output directory (e.g., results/soft_
pirate_truthfulqa_full/) will contain the same set
of score files as in (E1), used to verify results in Tables
4, 11, and 12.

(E4): [Case Study] [4 compute-hours, 25GB VRAM]: This
experiment demonstrates soft prompt obfuscation on a
real-world prompt.
How-to: The experiment is encapsulated in a single
script that requires no command-line arguments.
Execution: Execute the script:

./bash_scripts/soft_prompt_obfuscation_case_study.sh

Results: The output directory results/soft_manga_
miko_case_study/ contains score files (same as (E1))
to verify the results in Table 5.

(E5): [Comparison to LoRA Finetuning] [1 compute-hour,
13GB VRAM]: This experiment fine-tunes a LoRA
adapter as a baseline.
How-to: We provide scripts for "Full", "Style", and
"Task" scenarios, mirroring the structure of (E3).
Execution: To reproduce the "Full" scenario for ‘pirate‘
on ‘truthfulqa‘:

./bash_scripts/run_finetuning_full.sh --style
pirate --dataset_name truthfulqa

Results: The output directory (e.g., results/
finetuning_pirate_truthfulqa_full/) contains
best_adapter_scores.json. These scores corre-
spond to the ’finetune’ column in Table 6 and can be
compared with the ’obf’ scores from (E3).

(E6): [Robustness Against Prompt Extraction] [15 compute-
minutes, 14GB VRAM]: This experiment evaluates ro-
bustness against prompt extraction attacks.
How-to: This script requires the results directory from
a soft prompt obfuscation run (E3).
Execution: To test the ‘pirate‘ style on ‘truthfulqa‘
from (E3):

./bash_scripts/run_prompt_extraction_attack.sh
--results_dir
results/soft_pirate_truthfulqa_full

Results: The console output reports the number of suc-
cessful extractions for both obfuscated and conventional
prompts, corresponding to the data in Table 7.

(E7): [Robustness Against Projection Attack] [2 compute-
minutes, 10GB VRAM]: This experiment evaluates de-
obfuscation via direct projection to the token space.
How-to: This script requires the results directory from

a soft prompt obfuscation run (E3).
Execution: To test the ‘pirate‘ style on ‘truthfulqa‘
from (E3):

./bash_scripts/run_projection_attack.sh
--results_dir
results/soft_pirate_truthfulqa_full

Results: The key files to verify against Table
8 are euclidean_sys_prompt_scores.json,
cosine_sys_prompt_scores.json, and
random_sys_prompt_scores.json.

(E8): [Soft Fluency Deobfuscation Attack] [3.5 compute-
hours, 30GB VRAM]: This experiment runs the "soft"
fluency optimization attack.
How-to: The script requires the results directory from
a soft prompt obfuscation run (E3).
Execution: Using the ‘pirate‘ style on ‘truthfulqa‘ from
(E3):

./bash_scripts/run_fluency_deobfuscation_soft.sh
--results_dir
results/soft_pirate_truthfulqa_full

Results: The output directory will contain the similarity
scores for the deobfuscated prompt and the random base-
line. The key files to verify against Table 9 are best_
deobf_sys_prompt_soft_scores.json (’deobf’ col-
umn) and random_sys_prompt_scores.json (’rand’
column).

(E9): [Hard Fluency Deobfuscation Attack] [7 compute-
hours, 31GB VRAM]: This experiment runs the "hard"
fluency optimization attack.
How-to: The script requires the results directory from
a soft prompt obfuscation run (E3).
Execution: Using the ‘pirate‘ style on ‘truthfulqa‘ from
(E3):

./bash_scripts/run_fluency_deobfuscation_hard.sh
--results_dir
results/soft_pirate_truthfulqa_full

Results: The output directory will contain the similarity
scores for the deobfuscated prompt and the random base-
line. The key files to verify against Table 10 are best_
deobf_sys_prompt_hard_scores.json (’deobf’ col-
umn) and random_sys_prompt_scores.json (’rand’
column).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

--style
--dataset_name
--dataset_name
results/soft_pirate_truthfulqa_full/
results/soft_pirate_truthfulqa_full/
results/soft_manga_miko_case_study/
results/soft_manga_miko_case_study/
results/finetuning_pirate_truthfulqa_full/
results/finetuning_pirate_truthfulqa_full/
best_adapter_scores.json
euclidean_sys_prompt_scores.json
cosine_sys_prompt_scores.json
random_sys_prompt_scores.json
best_deobf_sys_prompt_soft_scores.json
best_deobf_sys_prompt_soft_scores.json
random_sys_prompt_scores.json
best_deobf_sys_prompt_hard_scores.json
best_deobf_sys_prompt_hard_scores.json
random_sys_prompt_scores.json
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


