ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
Approximation Enforced Execution of Untrusted Linux Kernel Extensions

Hao Sun
ETH Zurich

A Artifact Appendix

A.1 Abstract

This artifact accompanies the paper on Approximation-
Enforced Execution (AEE), a novel concept for ensuring the
safe execution of untrusted kernel extensions even in the po-
tential presence of the verifier’s soundness bugs. The artifact
consists of Linux kernel patches for version 6.7, which im-
plement the offset, size, and tag enforcement, alongside a
suite of benchmarks, build scripts, and analysis tools. This
appendix provides a detailed roadmap for building the cus-
tomized kernels, executing functional and performance evalu-
ations, and reproducing the paper’s results, including AEE’s
impact on runtime overhead, binary size, verification time,
and the trusted code base (TCB) reduction.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact operates exclusively within QEMU ARMG64 vir-
tual machines (VMs) running modified Linux kernels. All
evaluations involving untrusted eBPF programs are conducted
in isolated VMs, ensuring that no interactions with the host
environment occur. Evaluators must refrain from executing
modified kernels or any associated exploits outside the QEMU
environment. The artifact does not collect or transmit any data,
nor does it require or expose sensitive information.

A.2.2 How to access

The complete artifact package—including kernel patches,
benchmark workloads, build and execution scripts, pre-
built kernel binaries, and disk images—is archived at:
https://doi.org/10.5281/zenodo.15609051. Evalua-
tors are advised to begin from the root directory of the un-
packed archive, which contains all resources necessary for
reproduction and evaluation.

A.2.3 Hardware dependencies

The artifact has been tested under the following hardware
conditions:

Zhendong Su
ETH Zurich

¢ CPU: Host system capable of running QEMU with
ARM64 emulation and Pointer Authentication Code
(PAC) support (validated on Apple M1).

¢ Memory: At least 16 GB of RAM is recommended to
ensure reliable kernel compilation and VM execution.

 Storage: A minimum of 50 GB of available disk space is
required to accommodate kernel sources, build artifacts,
disk images, and experimental results.

A.2.4 Software dependencies

The following software dependencies are required for full
functionality and building relevant components:

* Operating System: A Linux host system is required to
build the customized kernel (validated on Ubuntu 22.04).
MacOS systems with Apple Silicon (M1+) are tested for
running all the benchmarks in the virtual machine; other
systems running on ARM64 are also feasible.

¢ Emulator: QEMU version 7.0.0 or later with ARM64
support (e.g., gemu-system-aarch64); tested on
QEMU version 9.2.2.

e Build Tools: make, flex, bison, libssl-dev,
libelf-dev, libncurses-dev, dwarves for building
the Linux kernel from source.

* Cross Compiler: gcc-aarch64-linux-gnu; tested
with version 11.4.

* Analysis Tools: Python3 and Rust for parsing and exe-
cuting the evaluation scripts.

If the evaluator opts to use the pre-built kernels included in
the archive, kernel compilation is not required, and the Linux
host prerequisite may be skipped. On Ubuntu/Debian-based
systems, the required dependencies can be installed with the
following command:

apt install build-essential gcc-aarch64-linux-gnu flex

bison libssl-dev libelf-dev libncurses-dev dwarves
python3 rustc cargo gemu-system-arm



A.2.5 Benchmarks

The artifact includes four benchmark suites that collectively
evaluate AEE’s effects on program size, verification time,
and execution time across various enforcement configura-
tions. All benchmarks are pre-installed in the provided disk
image: (1) linux-progs: eBPF programs extracted from
Linux kernel selftests and samples; (2) 1inux-bench: bench-
mark programs crafted to stress specific eBPF instruction
patterns and corner cases; (3) kat ran: real-world eBPF work-
loads from the production-level load balancer; and (4)filter:
CPU-intensive eBPF packet filters used for performance stress
testing. These benchmarks are used to quantify the potential
overhead introduced by AEE’s enforcement.

A.3 Set-up
A.3.1 Installation

All setup steps assume that the evaluator is operating from the
root directory of the unpacked artifact archive. The artifact
provides automated scripts to minimize manual intervention.

Step 1: Download Linux v6.7 Source.

mkdir -p build kernels
wget -P build <download_link>/linux-6.7.tar.gz

Step 2: Build Kernel Variants. The following script per-
forms various tasks: (1) it unpacks the Linux 6.7 source tree;
(2) it applies AEE kernel patches; and (3) it compiles five
kernel variants. The kernel variants include: (1) clean: un-
modified baseline kernel (no AEE); (2) all: kernel with all
three AEE mechanisms enabled; (3) offset: kernel with
only the offset enforcement; (4) tag: kernel with only the
tag enforcement; and (5) size: kernel with only the size en-
forcement. Note that kernel compilation must be performed
on a Linux host. macOS is not supported for this step due to
toolchain and compatibility limitations.

./scripts/build_kernels.sh full
Step 3: Synchronize Kernel Images. After successful compi-

lation, synchronize the kernel images to the designated direc-
tory. All resulting images will be available in . /kernels/:

./scripts/sync_kernels.sh

Step 4: Disk Image Preparation. A pre-built ARM64 Debian
Bookworm disk image is provided in imgs/. It includes: (1)
pre-installed SSH keys for headless login; and (2) benchmark

scripts and execution tools. No additional configuration is
required unless re-generating the image from scratch.

A.3.2 Basic Test
To boot the baseline kernel in QEMU:

./scripts/boot.sh clean

This launches QEMU with the clean kernel. You should
observe Linux boot messages followed by a login prompt. To
login via SSH:

ssh -1 imgs/bookworm.id_rsa -p 10023 root@localhost

To exit the VM safely, execute:

shutdown now

You may also test other kernel variants:

./scripts/boot.sh all
./scripts/boot.sh offset
./scripts/boot.sh tag
./scripts/boot.sh size

A.4 Evaluation workflow
A.4.1 Major Claims

The artifact supports the following key claims made in the

paper:

(C1): AEE reduces the verifier’s trusted code base (TCB) by
4.5x (see Table 1).

(C2): AEE prevents kernel exploitation via verifier sound-
ness bugs (see §6.1 and Table 2).

(C3): AEE incurs 1.2% runtime and 4.8% binary size over-
head on average (see Tables 3-5).

A4.2 Experiments

Each experiment below corresponds to one or more paper
claims. All experiments are self-contained and can be run
using the provided scripts and disk image.

(E1) TCB Reduction (15 min manual effort). This experi-
ment measures the reduction in the trusted code base achieved
by enforcing the approximation produced by the verifier with
AEE. The file scripts/TCB_stats.pdf reports the lines of
code (LOC) for: (1) V. a: approximation logic in the verifier;
(2) v.s: safety checks retained in the TCB; and (3) AEE
implementation: runtime enforcement components. The eval-
uator can (1) open scripts/TCB_stats.pdf, and (2) review
LOC breakdown for V. a, V.s, and AEE, and (3) optionally
cross-reference the kernel source in build/linux-6.7/.

Interpretation: The verifier’s approximation logic dominates
its complexity. By shifting approximation out of the TCB and
into smaller enforcements, AEE reduces the verifier’s TCB
by 4.5x, supporting Claim (C1).

(E2) Exploit Mitigation (30 min manual + 0.5 hr com-
pute). This experiment evaluates AEE’s ability to prevent
exploits that bypass verifier checks. Exploit PoCs located in
exploits/ target known bugs in the verifier’s approximation
logic. To reproduce C2, the evaluator should (1) boot the base-
line kernel using scripts/boot.sh clean, (2) SSH into the



VM and execute each exploit, (3) repeat this procedure on the
AEE-enabled kernel. Please refer to exploits/README.md
for more specific instructions.

Interpretation: On the unprotected kernel, the exploits com-
promise kernel integrity. Under AEE, violating accesses are
caught at runtime, demonstrating effective mitigation. This
validates Claim (C2), as shown in Table 2 and §6.1.

E3.1 Binary Size Overhead (1-2 hr compute). The goal
is to quantify the increase in binary size of eBPF pro-
grams caused by AEE’s runtime enforcement. The script
run_bench.sh bench_size triggers execution of bench-
marks inside QEMU for each kernel variant, measuring the
bytecode size of eBPF programs before and after AEE trans-
formations. It uses the disk image, runs the target workloads,
and collects raw statistics. The analyze.sh size script
parses the results and produces the analysis results.

./scripts/run_bench.sh bench_size
./scripts/analyze.sh size

Interpretation: Results show per-benchmark and average
binary size increases. The "impacted average" reflects only
modified programs, while the "overall average" includes all
inputs. AEE causes a modest increase (~4.8%) consistent
with the results shown in Table 3.

E3.2 Execution Time (1-2 hr compute). This part as-
sesses AEE’s runtime overhead during the execution of eBPF
programs. The script run_bench.sh bench_exec_time
launches the QEMU VM for each kernel variant, runs
each benchmark suite, and saves execution statistics. The
analyze.sh exec_time script computes per-suite and
global averages.

./scripts/run_bench.sh bench_exec_time
./scripts/analyze.sh exec_time

Interpretation: The output includes execution times per
benchmark and enforcement variant. The all configuration

yields ~1.2% average runtime overhead, with individual en-
forcements contributing differently. These results support the
statistics shown in Table 4.

E3.3 Verification Time (1-2 hr compute). Finally, we mea-
sure the increase in verification time incurred by enabling
AEE. The run_bench.sh bench_verify_time script exe-
cutes each benchmark and records the time spent on veri-
fication, including AEE transformations. The analyze.sh
verify_time script computes total and average timing per
kernel configuration.

./scripts/run_bench.sh bench_verify_time
./scripts/analyze.sh verify time

Interpretation: The results show that while AEE increases
verification time due to transformation overhead, the increase
remains acceptable for practical deployment. Table 5 in the
paper summarizes these findings.

Note: For additional guidance and expected outputs, please
refer to README . md in the artifact archive.

A.5 Notes on Reusability

AEE is implemented as a modular set of patches applicable
to Linux v6.7 and can be adapted to future versions with cer-
tain integration effort. Each enforcement mechanism—tag,
offset, and size—is isolated, allowing evaluators to enable or
disable them independently. The infrastructure is compatible
with privileged execution contexts and exposes hooks (e.g.,
BPF_F_TEST_REWRITES) for custom instrumentation and in-
trospection. Researchers may repurpose the artifact to develop
or test alternative verifier-hardening techniques or runtime
policies for eBPF safety enforcement.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


