
USENIX Security ’25 Artifact Appendix: Exposing and Circumventing
SNI-based QUIC Censorship of the Great Firewall of China

Ali Zohaib*

University of Massachusetts Amherst
Qiang Zao*

GFW Report
Jackson Sippe

University of Colorado Boulder

Abdulrahman Alaraj
University of Colorado Boulder

Amir Houmansadr
University of Massachusetts Amherst

Zakir Durumeric
Stanford University

Eric Wustrow
University of Colorado Boulder

A Artifact Appendix

A.1 Abstract

Our paper presents the first study of China’s new capabil-
ity to censor QUIC connections based on the Server Name
Indication (SNI) field. We find that China has started decrypt-
ing QUIC Initial packets at scale, employing unique filtering
rules and a distinct blocklist different from its other censor-
ship mechanisms. We measure the blocked domains, reverse-
engineer the filtering rules (e.g., filtering connections where
source port > destination port), and demonstrate how modest
QUIC traffic surges can overwhelm the system and reduce
the effectiveness of its blocking. Furthermore, we show how
the GFW’s QUIC blocking mechanism can be exploited to
block UDP connections between arbitrary hosts.

This artifact provides the code and data from our experi-
ments. It is structured to make all figures and results in the
paper reproducible and to enable independent verification of
our claims about the GFW’s QUIC-SNI blocking.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The tools used in this artifact do not pose any risk to the evalu-
ators’ machines or data privacy. All measurements performed
using this artifact are non-destructive and are for verification
purposes only.

A.2.2 How to access

The repository containing the code and data can be
cloned from GitHub: https://github.com/gfw-report/
usenixsecurity25-quic-sni. Archived versions of the ar-
tifact are available under the DOI: 10.5281/zenodo.15606165.

*Ali Zohaib and Qiang Zao contributed equally to this work.

A.2.3 Hardware dependencies

For the AE reviewers, we have provisioned two Virtual Private
Servers (VPSes) for experiments. Both servers are configured
with a single CPU core and 2GB of RAM. The first is hosted in
China at the Tencent Cloud Guangzhou Datacenter (AS45090)
and uses an Intel Xeon Platinum 8255C CPU. The second
is in the U.S. at AWS Oregon (AS16509) and uses an Intel
Xeon E5-2686 v4 CPU. Reviewers can SSH into the servers
using the credentials provided.

A.2.4 Software dependencies

Both servers provided to the reviewers run Ubuntu 20.04 LTS.
The following software tools and libraries are required on the
local machine to compile and run the tools and experiments
in this artifact:

• GNU make utility
• GNU plot (gnuplot) utility
• Docker >= 20.10.0
• Python 3.9+
The primary evaluation method uses a Docker container

to build all necessary tools. However, individual tools can
be compiled and run directly on your local machine without
Docker. If you choose this path, you will also need to install:

• Go 1.22+
• Rust (rustc,cargo) 1.82+
• Packages: build-essential clang cmake

A.2.5 Benchmarks

None.

A.3 Set-up

We provide AE reviewers with two pre-configured VPSes
(usenix-ae-us and usenix-ae-cn) that include all the required
tools and dependencies. For those who wish to set up their

https://github.com/gfw-report/usenixsecurity25-quic-sni
https://github.com/gfw-report/usenixsecurity25-quic-sni

own environment, we also offer a one-click script to automat-
ically compile and transfer the tools on new VPSes.

A.3.1 Installation

• Docker: https://docs.docker.com/get-docker/
• GNU make: https://gnu.org/software/make/
• Download the repository: https://github.com/
gfw-report/usenixsecurity25-quic-sni using
Git clone.

• Compile and transfer tools to VPSes:
cd usenixsecurity25-quic-sni/utils;
make \

SERVER_HOST=$USENIX_AE_US \
SERVER_USER=$USENIX_AE_US_USER \
SERVER_SSH_KEY=$USENIX_AE_SSH_KEY \
CLIENT_HOST=$USENIX_AE_CN \
CLIENT_USER=$USENIX_AE_CN_USER \
CLIENT_SSH_KEY=$USENIX_AE_SSH_KEY

Running the make command will compile the nec-
essary tools and transfer tools to the servers. The
SERVER_HOST/USER/KEY and CLIENT_HOST/USER/KEY vari-
ables should be set using the credentials provided.

A.3.2 Basic Test

Log in to the two VPSes using the provided credentials:

ssh -i $USENIX_AE_SSH_KEY \
$USENIX_AE_CN_USER@$USENIX_AE_CN

In a separate terminal window:
ssh -i $USENIX_AE_SSH_KEY \
$USENIX_AE_US_USER@$USENIX_AE_US

Then run the following command on the usenix-ae-us VPS:

sudo tcpdump udp and host $USENIX_AE_CN \
-Uw - | ./server-parser

On the usenix-ae-cn VPS:

echo baidu.com | ./quic-sni-sender -p 443 \
--sport=65000 --dip=$USENIX_AE_US \
--socket-pool-size 1

After 10 seconds, check the terminal on the server (usenix-
ae-us). You will see output in CSV format. The value in the
last column indicates the test result. A value of True means
the QUIC connection was blocked, while False means the
connection was successful.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GFW decrypts QUIC Initial packets to inspect SNI
fields and block QUIC connections. This is proven by
experiment (E1).

(C2): The GFW blocks QUIC connections where the client’s
source port is greater than the server’s destination port.
This is supported by experiment (E2).

(C3): The GFW exhibits varied responses to different QUIC
and QUIC-like payloads. This can be confirmed by ex-
periment (E3).

(C4): Sending a dummy UDP payload before the Client Ini-
tial packet can bypass the GFW’s QUIC-SNI blocking.
This is proven by experiment (E4).

A.4.2 Experiments

Before proceeding, ensure the VPSes are set up with the
tools and dependencies detailed in the previous section. The
experiments will be conducted between a client machine in
China (usenix-ae-cn) and a server in the U.S. (usenix-ae-us).
In each experiment, the client will send QUIC packets/probes
to the server. To prevent residual interference, a 5-minute
interval should be observed between each test. We recommend
running the experiments multiple times, as the GFW’s QUIC-
blocking behavior can exhibit diurnal variations (see Section
3.4 of the paper).
(E1): [Test QUIC-SNI Blocking] [5 human-minutes + 5

compute-mintues]: This experiment verifies the GFW’s
ability to decrypt and block QUIC connections based on
SNI in the Initial Packet.
Preparation: Log in to the two VPSes using the pro-
vided credentials.
Execution: On the usenix-ae-us VPS, run:
sudo tcpdump udp and host $USENIX_AE_CN \
-Uw - | ./server-parser
On the client (usenix-ae-cn), run the following command
to send a QUIC probe. This probe consists of a Client
Initial packet, followed by a 5 second delay, and then
subsequent 10-byte UDP payloads.
echo google.com | ./quic-sni-sender -p 443 \
--socket-pool-size 1 --dip=$USENIX_AE_US \
--sport=55000
Results: Wait approximately 10 seconds for the server-
parser script on the server to produce its output. A typical
result will appear as follows:
2025/06/04 03:01:34 Started parsing: /dev/stdin
tcpdump: listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
2025-06-04T03:02:08Z,{usenix-ae-cn_IP},{usenix-ae-us_IP},55001,4437,google.com,true

The parser determines that a connection is blocked if it
receives the QUIC Initial Packet but none of the subse-
quent UDP payloads arrive. This outcome is indicated by
the true value in the final column. A false value signifies
that no blocking was detected. Test other SNI values like
baidu.com (to verify behavior for exempt domains) and
cloudflare-dns.com, youtube.com (to verify block-
ing for other domains).

(E2): [Testing Rule: SourcePort > Destination Port] [5
human-minutes + 5 compute-minutes]: This experiment
tests the GFW’s filtering rule for QUIC Initial packets
in which the source port must be greater than the desti-

https://docs.docker.com/get-docker/
https://gnu.org/software/make/
https://github.com/gfw-report/usenixsecurity25-quic-sni
https://github.com/gfw-report/usenixsecurity25-quic-sni

nation port.
Preparation: Run the parser (sudo tcpdump
udp and host $USENIX_AE_CN -Uw - |
./server-parser) from E1 on the server (usenix-ae-
us).
Execution: Run the following command on the client
(usenix-ae-cn):

echo google.com | ./quic-sni-sender \
-p 5000 --socket-pool-size 1 \
--dip=$USENIX_AE_US \
--followup-payloads=10 \
--bind-ip=0.0.0.0 \
--sport=4000 \
--no-use-greater-srcports
SrcPort (4000) < DestPort (5000)
-> Expected Result: NOT BLOCKED

echo google.com | ./quic-sni-sender \
-p 443 --socket-pool-size 1 \
--dip=$USENIX_AE_US \
--followup-payloads=10 \
--bind-ip=0.0.0.0 \
--sport=65000
SrcPort (65000) > DestPort (443) \
-> Expected Result: BLOCKED

Results The results from the first command should show
a False value in the last column, indicating that the con-
nection was not blocked. The second command should
show a True value, indicating that the connection was
blocked due to the source port being greater than the
destination port.

(E3): [Test Different QUIC Payloads] [30 human-minutes
+ 30 compute-minutes]: This experiment evaluates the
GFW’s blocking behavior based on various QUIC pay-
loads as detailed in Table 3 of the paper. The payloads
can be generated using the quic-packet-builder
utility in the utils directory.
Preparation: Begin by capturing UDP traffic on the
server (usenix-ae-us) using: sudo tcpdump udp and
host $USENIX_AE_CN
Execution: On the client (usenix-ae-cn), run the follow-
ing commands using the payloads files linked in the table
here.
Send QUIC payload using netcat
nc -u -q 0 -p 60001 $USENIX_AE_US 444 \
< ./payloads/exp1.bin
Then send follow-up payloads repeatedly to the same
destination port using the same source port using the
following command:
Send arbitrary UDP payload to the server
echo "10101010101010101010" | xxd -r -p \
| nc -u -q 0 -p 60001 $USENIX_AE_US 444

Results: Depending on if any follow-up payload pack-
ets arrive at the server, one can determine if the con-
nection was blocked or not. The results should match
findings in Table 3 of the paper. Change the source and
destination ports between each test to avoid residual in-
terference.

(E4): [Test Dummy Payload Bypass] [5 human-minutes + 5
compute-minutes]: This experiment shows how sending
a dummy UDP payload before the Client Initial packet
can bypass the GFW’s blocking.
Preparation: Capture UDP traffic on the server
(usenix-ae-us) using: sudo tcpdump udp and host
$USENIX_AE_CN
Execution: Run the following command on the client
(usenix-ae-cn):
Send an arbitrary UDP payload to the server
echo "0000000000000000000000000000" \
| xxd -r -p | nc -u -q 0 \
-p 65535 $USENIX_AE_US 6126
Wait a few seconds and then send the QUIC packet con-
taining a forbidden SNI (google.com in this example):
echo google.com | ./quic-sni-sender -p 6126 \
--socket-pool-size 1 --dip=$USENIX_AE_US \
--sport=65535
Results: Successful arrival of all subsequent packets on
the 4-tuple (src_ip, 65535, dst_ip, 6126) at the
server confirms the bypass.

A.5 Reproducing Paper Resources
To reproduce the figures and data presented in the paper, fol-
low these instructions: First, set up your Python environment:

python3 -m venv venv
. venv/bin/activate
pip install -r requirements.txt

Each figure and table in the paper can be reproduced indi-
vidually via the make command in its respective experiment
directory. A comprehensive list of the commands required to
reproduce each figure and table is provided in Tables 1 and
2. These commands should be run from the experiments
directory.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://github.com/gfw-report/usenixsecurity25-quic-sni?tab=readme-ov-file#experiment-3-testing-quic-payloads-listed-in-table-3-of-the-paper
https://secartifacts.github.io/usenixsec2025/

Section Figure Command Output file

3.2 GFW’s Blocking Latency Fig 2 & 10
cd how-fast-gfw-blocks; make
clean; make

how-fast-the-gfw-blocks.pdf,
how-fast-the-gfw-blocks-
boxplot.pdf

3.3 Blocking Rule: Source Port
>= Destination Port

Fig 3 & 11
cd rule-srcport-greater-than-dst-
port; make clean; make

heatmap-ports-401-450-step-
1_heatmap.pdf,
heatmap-ports-1-65000-step-
1000_heatmap.pdf

3.4 Diurnal Blocking Pattern Fig 4
cd diurnal-blocking; make
clean; make

diurnal-timeseries-three-
sources.pdf

3.6 Parsing Idiosyncrasies Fig 5
cd what-triggers-blocking;
make clean; make

quic_parse_heatmap.pdf

4. Monitoring the Blocklist over
Time

Fig 6
cd sni-blocklist; make clean;
make

domains-blocked-over-quic-
weekly.pdf

4.1. Comparison with Other
Blocklists

Fig 7
cd overlap-between-blocklists;
make clean; make

venn-intersection-between-
lists.pdf

5. GFW Degradation Attack Fig 8

cd degradation-attack; cd
Figure_8_experiments
/AVG_exp23-22-20_sensitive-
stressing_and_exp25-26-
27_random-stressing; make
clean; make

stressing_rates.eps

Table 1: This table lists the commands required to reproduce each figure from the main paper using the provided artifact. For
each figure, the corresponding section, command, and output file are specified.

Table Data sources Command

1

./network-tap/data/tuple-count-2025-01-22-16-00.statistics-
quic-conn.txt,
./network-tap/data/tuple-count-2025-01-22-16-00.statistics-
udp-pkt.txt

—

2 ./ttl-location/data/DNS/{city}-dns-and-traceroute-result.txt,
./ttl-location/data/QUIC/{city}-ttl_anon.pcap

—

3 ./what-triggers-blocking/payloads,
./what-triggers-blocking/results.txt

—

4 ./sni-blocklist/ make clean && make
5 ./overlap-between-blocklists make clean && make
6 ./availability-attack/data/ec2/ make clean && make

Table 2: This table lists the data sources and commands required to reproduce each table from the main paper using the artifact
repository.

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Reproducing Paper Resources
	Version

